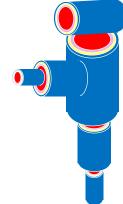


Nonhomogeneous heat transfer simulation using a female human model

Michael Castellani, BS Timothy P. Rioux, BS Adam Potter, MS Xiaojiang Xu, PhD COMSOL CONFERENCE 2018 BOSTON

U.S. Army Research Institute of Environmental Medicine Biophysics & Biomedical Modeling Division Natick, Massachusetts 01760-5007


Approved for public release; distribution is unlimited. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

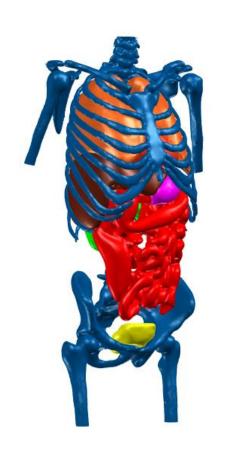
Introduction

- Human thermoregulatory models have been developed and applied since early 1960s
- Most human body models have been constructed from cylinders and ellipses using CAD software
- Medical images can be used to create a more accurate representation of the human body
- Purpose of the study is to use a geometrically and anatomically accurate mesh to perform heat transfer analysis and create temperature profiles in the human body

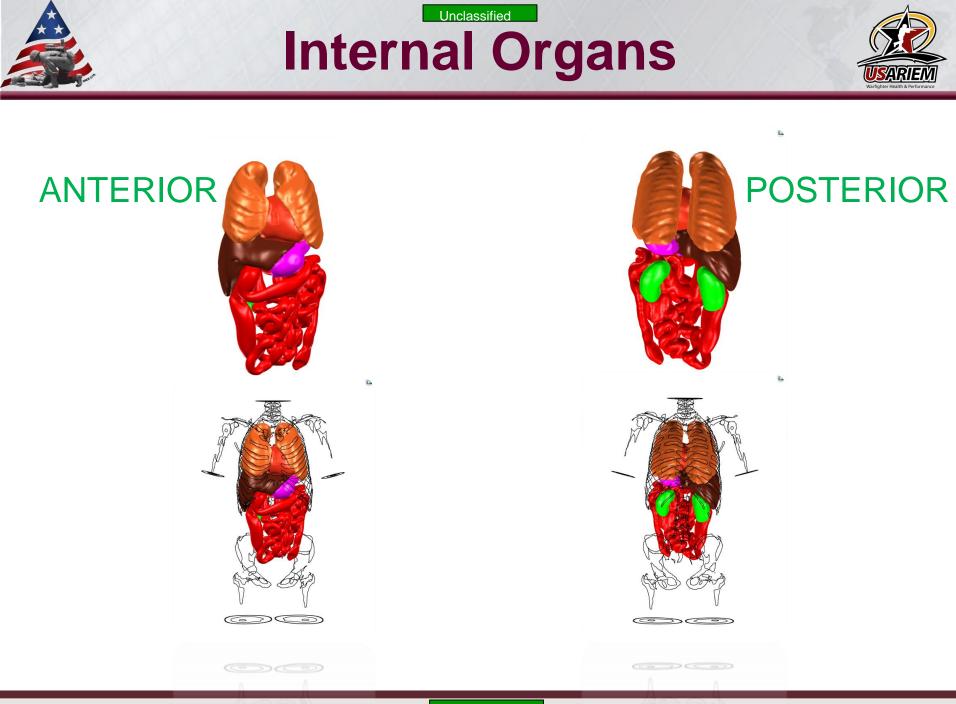
Multiple cylinders or elliptical-cylinder

Average American Female Height:1.62 m (~5' 4") Weight: 66 kg (~145 lbs.) Body Fat: 36.1% Age: 36 year Volume: 0.0445 m³ Surface Area: 0.777m²

Vertices: 566,830 Tetrahedra: 2,985,530 Triangles: 802,750 Edge elements: 13,020 (Segars et al Med Phys 2010, Simpleware Inc)



Organs Muscle



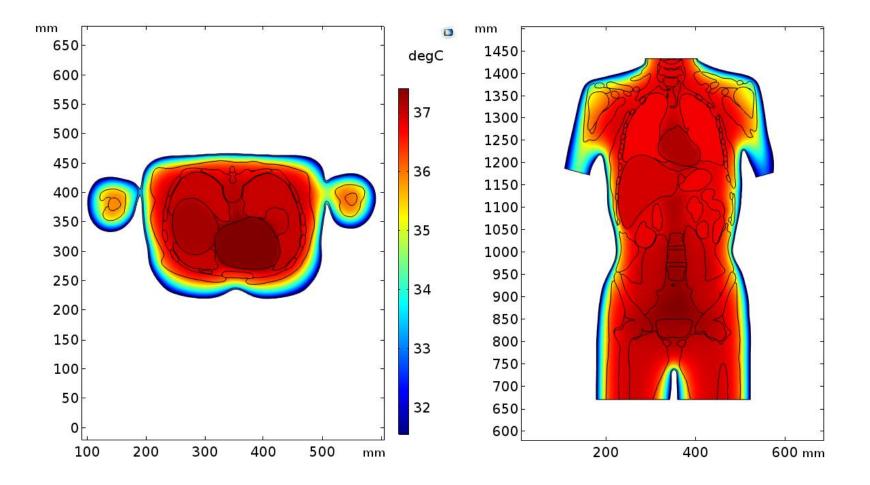
BIOLOGICAL HEAT TRANSFER WITHIN THE BODY:

$$\rho c_p \frac{\partial T}{\partial t} = \lambda \nabla^2 T + Q + \omega_b \rho_b c_b (T_b - T)$$

HEAT FLUX AT THE SURFACE:

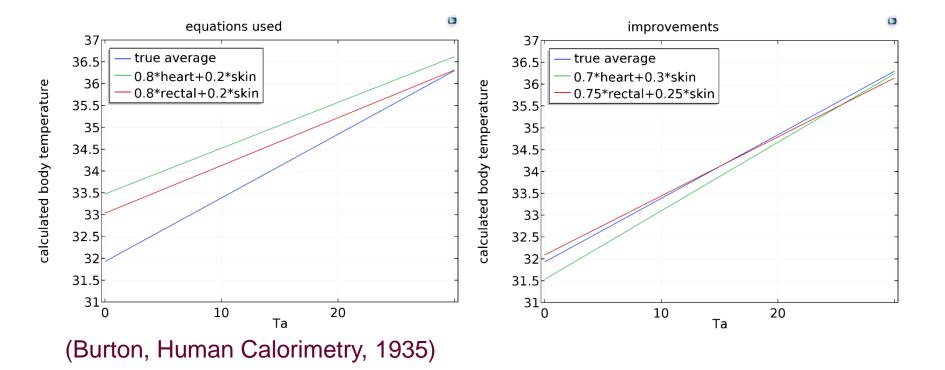
$$q = (h_c + h_r) \cdot (T - T_a) + E$$

Comsol Implementation

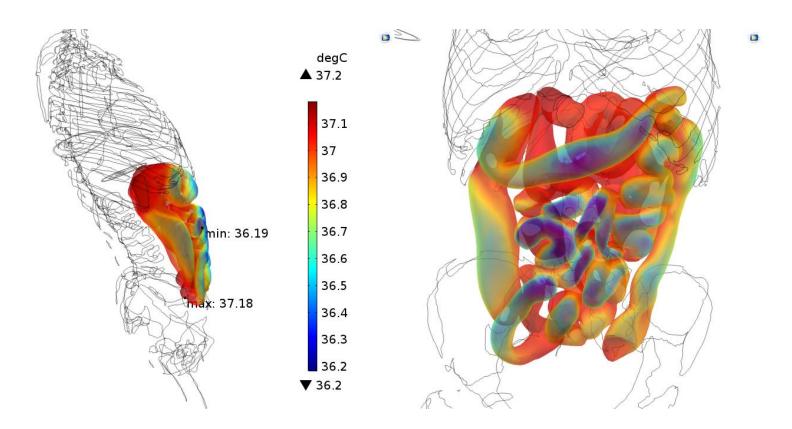


→ ↑ ↓ ▼ ▼ □↑ □↓ □ Parameters Q, Q, D, ⊡ ↓ ▼ ⊻ ½ 座 □□ ☑ □ I ⊡ □ + Add Study									
 Production Transformer of production the production of production the production of product	Model Builder	▼	rties		•	Graphics Convergence Plot 1	- #	Add Physics Add Study	▼ #×
	$ ightarrow ightarrow \uparrow \downarrow \ \ ightarrow ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Parameters				:0, 0, ⊕, ⊕ ↓ ▼ ₩ ½ № № ⊞ ₩ 💽 回 🔒		+ Add Study	
Control of the second of	🔺 🐟 Female50 Heat Transfer test.mph (root)	^					15	Studier	
 But which is a state of the state o	Global Definitions	 Parameters 				Volume: Temperature (degC) Volume: Temperature (degC)	9		
 Alteriols Alteriols	Pi Parameters						degC		
 Alteriols Alteriols	a= Variables 2	** Name	Expression	Value	Description		\$		
 I a data data data data data data data d	Materials	Q_skin_0	368.12[W/m^3]	368.12 W/m ³	^		▲ 37.7		
Particular State (arcs) Part Match State (arcs	Model 1 (mod 1)	Q_fat_0	368.36[W/m^3]	368.36 W/m ³					
I. Marked M. 1991 Laked M. 1991 I. Backded M. 1991 Laked M. 1991	Definitions	Q_muscle_0	684.18[W/m^3]	684.18 W/m ³			07.5		
 a transmission b set transmission c set transmission <	🖄 Geometry 1	Q_bladder_0	370.37[W/m^3]	370.37 W/m ³			37.5		n
¹ / ₂ Pet Median 13/ mord/ ¹ / ₂ Pet Median 14/ mord/	🔺 📑 Materials	Q_intestine_0	368.339[W/m^3]	368.34 W/m ³					
 A statistical and processing and processing of the set of	Part Material: SKIN (mat1)	Q_kidney_0	23889[W/m^3]	23889 W/m ³					
 a Hardwales House (Model) b Hardwales House (Model) c Hardwale House (Part Material: FAT (mat2)	Q_liver_0	14413.6[W/m^3]	14414 W/m ³				100 Empty Study	
Part Marcia MUSES (me3) Part Marcia MUSES Part Marcia MUSES (me3) Part Marcia MUSES Part Marcia MUSES (me3) Part Muses Part Mu	Part Material: MUSCLE (mat3)	Q_lung_0	365.49[W/m^3]	365.49 W/m ³			. 37		
 a fart Marcia SIGNA (<i>inco</i>) a fart Marcia SIGNA (<i>i</i>	Part Material: BLADDER (mat4)	Q_heart_0	24000 [W/m^3]	24000 W/m ³					
Part Material KUMS (mdf) September	Part Material: INTENSTINES (mat5)	omega_skin_0	0.000361[1/s]	3.61E-4 1/s					
<pre> Provide Museus Muses 1 max/ Provide M</pre>	Part Material: STOMACH (mat6)	omega_fat_0	0.000077[1/s]	7.7E-5 1/s					
 Productive URB (metric) Productive URB (metric)<	Part Material: KIDNEYS (mat7)	omega_muscle_0	0.000542[1/s]	5.42E-4 1/s			36.5		
Providence Production Productin Production Production Production Production Production Prod	🕨 🏥 Part Material: LUNGS (mat8)	omega_bladder_0	0.0001543[1/s]	1.543E-4 1/s					
Server Markenie BONSS (wardt)	Part Material: LIVER (mat9)	omega_intestine_0	0.0064002[1/s]	0.0064002 1/s					
Provident Boundary (P) Provident Bou	Part Material: HEART (mat10)	omega_kidney_0	0.07208[1/s]	0.07208 1/s					
Biological Trace 1 Biological Tra	Part Material: BONES (mat11)	omega_lung_0	0.04893[1/s]	0.04893 1/s			36	Physics interfaces in study	
Initial Values 1 Ini	🔺 📁 Bioheat Transfer (ht)	omega_liver_0	0.018008[1/s]	0.018008 1/s				Physics	Solve
in Termal Invaluants 1 in body 325 (sigs) (sig		omega_heart_0	0.0144072*1.0[1/s]	0.014407 1/s		An al there is a second second		🔲 Bioheat Transfer (ht)	
Termal insidian 1 Hest Flux 1 Log Lood 350 (I/gx/A 300/15/k 0) Cybic 2, Stood 350 (I/gx/A 300/15/k 0) Cybic 2, Stood 350 (I/gx/A 300/15/k 0) Solution 100 (Stop)	_		37 [degC]	310.15 K				- Multiphysics couplings in study	
I tear total I t	_	Ta	28 [degC]	301.15 K		STOL ALSO DILLA	35.5		
 Global Equations 1 Marke 1 Stationary Stationary<	_	Cp_blood	3850 [J/kg/K]			WD & Caller		Multiphysics couplings	Solve
 A Mesh 1 Solut 2 Solut 3 Solut 4 Solut 5 Solut 3 Solut 4 Solut 4 Solut 4 Solut 5 Solut 5	-	rho_blood	1059 [kg/m^3]	1059 kg/m³	~				
 Method Subj 2 Stationary Soluto Configurations Soluto Configurations Soluto Configurations Soluto 1 Results Cut Plane 3 Cut Plane 3 Cut Plane 3 Cut Plane 4 Cut Plane 5 Cut Plane 5 Cut Plane 6 Cut Plane 7 Cut Plane 7 Cut Plane 8 Cut Plane 8 Cut Plane 6 Cut Plane 7 Cut Plane 6 Cut Plane 7 Cut Plane 8 Cut Plane 8 Cut Plane 8 Cut Plane 1 Solution 11 (sUU) 1/2 81 5. (1 minut, 21 seconds) Number of degrees of freedon solder of freedon		<			>		25		
 Solution in Solution Solution in Solution in Solution in Solution in Solution		+ + = 1	n 🗖 👘 🗸				- 35		
 Solver Configurations Solver Configurations Solver Study 2 Solver Study 3 Besuits Description: Description: Description: Study 1/Solution 1 (soft) Cut Plane 1 Cut Plane 3 Soluty 2/Solution 2 (soft) Cut Plane 4 Cut Plane 5 Cut Plane 5 Cut Plane 5 Cut Plane 6 Study 3/Solution 3 (soft) Study 3/Solution 3 (soft) Study 3/Solution 3 (soft) Study 3/Solution 3 (soft) Cut Plane 7 Cut Plane 8 Cut Plane 8 Cut Plane 8 Cut Plane 10 Cut Plane 10 Study 3/Solution 3 (soft) Soudy 3/Solution 3 (soft) Soudy 3/Solution 3 (soft) Soudy 3/Solution 3 (soft) Soudy 1/Solution 4 (soct) Soudy 1/Solution 3 (soft) <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>									
 Study 2 Study 3 Beression: Data Sets Data Sets Description: Description: </td <td></td> <td>Name:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Name:							
 Study 1/Solution 1 (soft) Study 1/Solution 1 (soft) Cut Plane 1 Study 2/Solution 2 (soft) Cut Plane 2 Cut Plane 3 Sudy 2/Solution 3 (soft) Cut Plane 6 Sudy 3/Solution 3 (soft) Sudy 1/Solution 1 (soft) Sudy 1/Solution 1 (soft) Sudy 1/Solution 3 (soft) Sudy 1/Solution 1 (soft) Sudy 3/Solution 3 (soft) Sudy 3/Solution 3 (soft) Sudy 1/Solution 1 (soft) Sudy 3/Solution 3 (soft) Sudy 1/Solution 1 (soft) Sudy 3/Solution 3 (soft) Sudy 3/Solution 3 (soft) Sudy 1/Solution 1 (soft) Sudy 1/Solution 1 (soft) Sudy 3/Solution 3 (soft) Sudy 3/Solution 1/Solution 1							24.5		
 Study 3 Study 3 Study 15 (solution 1 (sol1) Cut Plane 1 Cut Plane 3 Study 2/Solution 2 (sol2) Cut Plane 5 Cut Plane 6 Study 3/Solution 3 (sol3) Cut Plane 7 Cut Plane 8 Cut Plane 9 Cut Plane 9 Cut Plane 9 Cut Plane 6 Saved file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(rmale simulation and organ pics/FemaleSO Heat Transfer test.mph Savef file P\comsol conference OCT 2018(Expression:				2	34.5		
 Deta Sets Deta Sets Study 1/Solution 1 (sol1) Cut Plane 1 Cut Plane 3 Cut Plane 3 Cut Plane 4 Cut Plane 5 Cut Plane 6 Study 3/Solution 3 (sol3) Cut Plane 7 Cut Plane 8 Cut Plane 9 Cut Plane 10 Vews 									
 Study 1/Solution 1 (sol1) Cut Plane 1 Cut Plane 2 Study 2/Solution 2 (sol2) Cut Plane 3 Sudy 2/Solution 1 (sol1) Cut Plane 4 Cut Plane 5 Cut Plane 6 Sudy 3/Solution 3 (sol3) Cut Plane 7 Cut Plane 8 Cut Plane 8 Cut Plane 8 Cut Plane 9 Cut Plane 9 Cut Plane 10 Views 							▼ 34.3		
Cut Plane 1 Cut Plane 2 Cut Plane 3 Study 2/Solution 1 (sol2) Cut Plane 4 Cut Plane 5 Cut Plane 6 Study 3/Solution 3 (sol3) Cut Plane 8 Cut Plane 9 Cut Plane 10		Description:							
Cut Plane 2 Cut Plane 3 Study Z/Solution 2 (sol2) Cut Plane 4 Cut Plane 5 Cut Plane 6 Solution time (Study 1): 81 s. (1 minute, 21 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 1): 70 s. (1 minute, 30 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 1): 70 s. (1 minute, 30 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 3): 99 s. (1 minute, 30 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 3): 99 s. (1 minute, 30 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 3): 99 s. (1 minute, 40 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 3): 99 s. (1 minute, 40 seconds) Saved file: P\comsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) Solution time (Study 3): 104 s. (1 minute, 40 seconds) So									
Cut Plane 3 Study 2/Solution 2 (sol2) Cut Plane 3 Cut Plane 4 Cut Plane 5 Solution time (Study 1): 81 s. (1 minute, 21 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 1): 81 s. (1 minute, 21 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 3): 90 s. (1 minute, 30 seconds) Solution time (Study 3): 99 s. (1 minute, 30 seconds) Solution time (Study 3): 99 s. (1 minute, 30 seconds) Solution time (Study 3): 99 s. (1 minute, 40 seconds) Saved file: P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Solution time (Study 3): 90 s. (1 minute, 44 seconds) Saved file: P\comsol conference OCT 2018/females imulation and organ pics\Female50 Heat Transfer test.mph Solution time (Study 1): 91 s. (1 file P\comsol conference OCT 2018/females imulation and organ pics\Female50 Heat Transfer test.mph Solution time (Study 3): 91 s. (1 minute, 44 seconds) Saved file: P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Saved file: P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Saved file: P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph <td></td> <td></td> <td></td> <td></td> <td></td> <td>Messages Progress Log Maximum and minimum values</td> <td></td> <td></td> <td></td>						Messages Progress Log Maximum and minimum values			
Study 2/Solution 2 (sol2) Solution time (study 1): 81 s. (1 minute, 21 seconds) Solution time (study 1): 81 s. (1 minute, 21 seconds) Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Cut Plane 6 Solution time (study 1): 81 s. (1 minute, 21 seconds) Study 3/Solution 3 (sol3) Solution time (study 3): 99 s. (1 minute, 39 seconds) Solution time (study 3): 99 s. (1 minute, 39 seconds) Solution time (study 3): 99 s. (1 minute, 39 seconds) Solution time (study 3): 99 s. (1 minute, 40 seconds) Solution time (study 3): 99 s. (1 minute, 40 seconds) Solution time (study 3): 99 s. (1 minute, 40 seconds) Solution time (study 1): 91 s. (1 minute, 40 seconds) Solution time (study 3): 99 s. (1 minute, 40 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 3): 99 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seconds) Solution time (study 1): 91 s. (1 minute, 44 seco						wessages frogress log waxman and miniman values			1 1 1
Image: Cut Plane 4 Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Image: Cut Plane 5 Solution time (Study 1): 70 s. (1 minute, 10 seconds) Image: Cut Plane 6 Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Image: Study 3/Solution 3 (sol3) Solution time (Study 3): 99 s. (1 minute, 39 seconds) Image: Cut Plane 7 Saved file P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 8 Solution time (Study 3): 99 s. (1 minute, 40 seconds) Image: Cut Plane 8 Solution time (Study 3): 104 s. (1 minute, 40 seconds) Image: Cut Plane 9 Solution time (Study 3): 104 s. (1 minute, 40 seconds) Image: Cut Plane 10 Saved file P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file P\comsol conference OCT 2018/female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file P\comsol c						6			
Image: Cut Plane 5 Solution time (Study 1): 70 s. (1 minute, 10 seconds) Image: Cut Plane 6 Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Image: Study 3/Solution 3 (sol3) Solution time (Study 3): 99 s. (1 minute, 39 seconds) Image: Cut Plane 7 Saved file: P\ccomsol conference OCT 2018\female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 7 Saved file: P\ccomsol conference OCT 2018\female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 7 Saved file: P\ccomsol conference OCT 2018\female simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 8 Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Solution time (Study 3): 104 s. (1 minute, 44 seconds) Solution time (Study 3): 104 s. (1 minute, 44 seconds) Image: Cut Plane 9 Saved file: P\ccomsol conference OCT 2018\female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\ccomsol conference OCT 2018\female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\ccomsol conference OCT 2018\female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\ccomsol conference OCT 2018\female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\ccomsol conference OCT 2018\female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\ccomsol conference O									~
Cut Plane 6 Number of degrees of freedom solved for. 566830 (plus 727104 internal DOFs). Solution time (Study 3): 99 s. (1 minute, 39 seconds) Solution time (Study 3): 99 s. (1 minute, 39 seconds) Cut Plane 7 Saved file P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph Cut Plane 7 Saved file P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph Cut Plane 8 Number of degrees of freedom solved for. 566830 (plus 727104 internal DOFs). Cut Plane 9 Solution time (Study 3): 104 s. (1 minute, 44 seconds) Cut Plane 10 Saved file P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph Views Saved file P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph Solution time (Study 3): 104 s. (1 minute, 44 seconds) Saved file P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph Views Saved file P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph									
Solution 1 (sold3) Solution time (Study 3): 99 s. (1 minute, 39 seconds) Solution time (Study 3): 99 s. (1 minute, 39 seconds) Saved file: P\ccossol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Cut Plane 7 Saved file: P\ccossol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Cut Plane 8 Number of degrees of freedom solved for: 566830 (plus 727104) internal DOFs). Cut Plane 9 Solution ime (Study 3): 104 s. (1 minute, 44 seconds) Cut Plane 10 Saved file: P\cconsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Views Saved file: P\cconsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Views Saved file: P\cconsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Views Saved file: P\cconsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph									
Image: Cut Plane 7 Saved file PACombol Conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Image: Cut Plane 8 Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Image: Cut Plane 9 Solution time (Study 3): 104 s. (1 minute, 44 seconds) Image: Cut Plane 10 Saved file: PAComsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Image: Version Saved file: PAComsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Image: Version Saved file: PAComsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Image: Version Saved file: PAComsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Image: Version Saved file: PAComsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph Image: Version Saved file: PAComsol conference OCT 2018/ternale simulation and organ pics/Female50 Heat Transfer test.mph									
Image: Cut Plane 8 Number of degrees of freedom solved for: 566830 (plus 727104 internal DOFs). Image: Cut Plane 9 Solution time (Study 3): 104 s. (1 minute, 44 seconds) Image: Cut Plane 10 Saved file: P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph Image: Views Saved file: P\comsol conference OCT 2018/ternale simulation and organ pics\Female50 Heat Transfer test.mph									
Image: Cut Plane 9 Solution time (Study 3): 104 s. (1 minute, 44 seconds) Image: Cut Plane 10 Saved file: P\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Image: Cut Plane 10 Saved file: P\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph							Iransfer test.mph		
Cut Plane 10 Saved file P\comsol conference OCT 2018\female simulation and organ pics\FemaleS0 Heat Transfer test.mph Saved file P\comsol conference OCT 2018\female simulation and organ pics\FemaleS0 Heat Transfer test.mph Saved file P\comsol conference OCT 2018\female simulation and organ pics\FemaleS0 Heat Transfer test.mph									
Saved file: P:\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph Saved file: P:\comsol conference OCT 2018/temale simulation and organ pics\Female50 Heat Transfer test.mph						Saved file: P:\comsol conference OCT 2018\female simulation and organ pics\Female50 Heat T			
Saved file: P:/comsol conference UCT 2016/temale simulation and organ pics/remaledu Heat Transfer test.mpn									
Saved life P/comsol conference OCT 2016/remaie simulation and organ pics/remaies/ Heat Transfer test.mpn		~							~
						Javed me. P. (consol conference OCT 2010/remails simulation and organ pics/remails00 Heat 1	nansier testimph		





Calculating Average Body Temperature Application Example 1



Consistent with the finding from Goodman et al. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures (Med. Sci. Sports Exerc, Vol. 41, No. 3, pp. 597–602, 2009)

CONCLUSION

- The simulations provide an accurate assessment of the human body temperature with respect to the inhomogeneity
- Detailed data can be obtained from the simulations, which would be difficult to obtain during human studies, and can aid in study design and result analysis
- Finite element methods (e.g., COMSOL Multiphysics[™]) and geometries of nonhomogeneous human bodies can be used to create a new approach in modeling physiology