Study on Borehole Stability of Shale Gas Well under Multi-field Coupling

Zixin Yang, Ping Chen, Zhanghua Lian, Tianshou Ma
School of OIl & Natural Gas Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Introduction

The mechanical response of mud shale under the action of multiple field
coupling is always a hot topic in the field of drilling engineering. In this paper, a
multi-field coupled model is established, using the solid mechanics module
embedded in COMSOL and combined with the General form in PDE module to
complete the setting of the model. The grid encryption function is used to
encrypt the area around the well, which makes the calculation results more
advanced and more in line with the actual situation on site. The results show that
the collapse process of rock around the shaft wall is a dynamic evolution
process involving space and time, and COMSOL can well simulate the above 4-D
process. The simulation results can be used to analyze and simulate the effect of
time dependence on wellbore stability during drilling. It can also help drilling
engineers design drilling plans (including design and calculation of mud safety

density window, mud salinity, etc.).

Coupling model

Navier equations for displacements: A momentum balance equation is employed to
derive the Naviertype equation for displacements as:
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where K and G are bulk and shear moduli, u is the rock displacement and T Is the
temperature of the porous medium.

Pressure diffusion equation: Using conservation of mass for a weakly compressible
fluid along with the expression for the flux gives a coupled fluid diffusion equation as:
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whereo s the Biot's Coefficient, p is pore pressure, k is permeabillity, the fluid viscosity

is £¢ . €;; andC® are the components of total strain tensors and solute mass fractions.
Also, R Is the standard solute reflection coefficient (or membrane efficiency), R is the
universal gas constant. \ S Is the molar mass of the solute.K™ is the thermal osmosis
coefficient.

Equation for solute diffusion: Conservation of a solute mass in rock yields the following

equation for solute transfer:
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Where D is the solute diffusion coefficient and K" is the coefficient of thermal diffusion.

Equation for thermal conduction: Conservation of energy balance in the rock yields the

following equation for thermal conduction:
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Where ¢' is thermal diffusivity.

The coefficients in the governing equations are:
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boundary conditions

It iIs assumed that compressive stress Is positive and tensile stress is negative. The
rock is considered as a homogenous porous medium. The plane strain hypothesis and
iInstantaneous drilling are used to solve the non-linear system of equations. Solving the
non-linear system of equations requires knowledge of the initial solute concentration,
temperature and pore pressure within the flow domain:

C°(x,y,t)=C;>___(x,y) for t=0

Mean

P(x,y,t) =PRP(x,y) fort=0

T (X, y,t) = T,(x,y) for t=0

Dirichlet type boundary condition is C>(x,y, 1) =C/(x,y,t) on boundary

applied to the inn_er boundary for the P(x,y,t) = P(x,y,t) on boundary
solute concentration, temperature and
pore pressure as follows: T(x,y,t) =T, (X,y,t) onboundary

Calculation results

Maximum principal stress

) ! r*J T I.’x;_ ) LN Rock mechanical parameters
Ve, B B S VA S RN TN/ Drained Poisson’s ratio 0. 219
.;:¢ RTINS | A TN ST Undrained Poisson’s ratio 0.416
KRN TSN K Skempton coefficent 0.915
5 Y A VAVAVAYS FAVAY Y= g N Bulk Young’s modulus 4. 4GPa
11. i A5 r{ puf AVATELS '-._; AV V4 T~ -1 s Maximum horizontal stress 23MPa
f,';-_"_'_rb..__,: VAR | ]L 4‘l . Minimum horizontal stress 20MPa
f::;‘gﬁ:_'_-‘,;_-hj;'{_—-__--::v; mavavy o - 1 2 Solid bulk modulus 77.5GPa
:'}*I o ,:;*‘*“’,"‘ AV ::;.'-'!":':'__._I[-:;J I TN TN Hydraulic parameters
bR R RN TS Drilling fluid pressure 26MPa
T & sy T B e TR [nitial reservoir pressure 21MPa
p T Vo A o S R e [ Fluid bulk modulus 2. 5GPa
e DT =R A N
3 £ vt WATAVATER e el Chemical parameters
¢ w A :ﬂ*, VAT WAVAVAVAY, \\ Average solute mass fraction in formation 0.1
ATy AT, B Average solute mass fraction in drilling fluid 0.2
Minimum principal stress ?‘10'3"{";355 2 s°f'f‘_“e 0. 0585Kg;/mo]
Solute diffusion coefficient 5e-9m’/s
MeSh and boundary Membrane efficiency or reflection coefficient 0.1
condition loading Othe parameters
Formation temperature 353. 15K
Drilling fluid temperature 333. 15K
Wellbore radius 0. Im
Fluid viscosity 3e-4Ps * §
Fluid density 1211. 21Kg/m’
Porosity 0.218

Table 1. Basic Parameters
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The drilling engineer is very concerned about the stress and chemical physical state around the well. The
stress state around the hole can be simulated well by using COMSOL software.This can help engineers
solve engineering problems.
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