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Problem Statement

Problem: Assess the quality of a FEM solution quantitatively for all
Lagrange elements with polynomial degrees 1 ≤ p ≤ 5 available in
COMSOL.

Approach: Use guidance from the a priori error estimate

‖u− uh‖L2(Ω)
≤ C hq, as h → 0

with a constant C independent of h and the convergence order q > 0.
Here, h is the maximum side length of the elements in the triangulation.

Goal: Confirm that solutions on a sequence of meshes, that are
progressively uniformly refined, behaves as predicted by the error
estimate.

Concrete goal: Show how to do this in COMSOL’s GUI!
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Computational Convergence Study

Consider the FEM solution uh on a sequence of meshes with
uniform refinement levels r = 0, 1, 2, . . ., and let
Er := ‖u− uh‖L2(Ω)

denote the norm of the error.
Then assuming that Er = C hq, the error for the next coarser
mesh with mesh spacing 2h is Er−1 = C (2h)q = 2q C hq. Their
ratio is then Rr = Er−1/Er = 2q and Qr = log2(Rr) provides us
with a computable estimate for q as h → 0. Example:

r Er Rr Qr

0 1.077e–01 N/A N/A
1 2.652e–02 4.06 2.02
2 6.709e–03 3.95 1.98
3 1.684e–03 3.98 1.99
4 4.214e–04 3.99 2.00

This indicates that the convergence order is q = 2.
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FEM Theory for Lagrange Elements

For linear Lagrange elements (polynomial degree p = 1), optimal
convergence order is q = p + 1 = 2 in

‖u− uh‖L2(Ω)
≤ C hq = C h2

For Lagrange FEM with polynomial degree p = 1, . . . , 5,
as available in COMSOL, we expect q = p + 1 in

‖u− uh‖L2(Ω)
≤ C hq = C hp+1,

provided that
the solution u is smooth enough: u ∈ Hk(Ω) with k ≥ p + 1,
the domain Ω is open, bounded, convex, and simply connected,
and the domain boundary ∂Ω piecewise polygonal,
i.e., the domain Ω can be triangulated without error.

For Lagrange FEM with polynomial degree p = 1, . . . , 5,
if the solution is u ∈ Hk(Ω), then

‖u− uh‖L2(Ω)
≤ C hq, q = min{k, p + 1}.
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Elliptic Test Problem: Problem Statement

Classical elliptic test problem on a polygonal domain with Dirichlet
boundary conditions on Ω ⊂ R2

−4u = f in Ω,

u = r on ∂Ω.

Use unit square as domain: Ω = (0, 1)× (0, 1) ⊂ R2.
Right-hand side function:

f(x, y) = (−2π2)
(
cos(2πx) sin2(πy) + sin2(πx) cos(2πy)

)
Homogeneous Dirichlet boundary conditions:

r(x, y) = 0
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Elliptic Test Problem: PDE Solution

u(x, y) = sin2(πx) sin2(πy) on Ω = (0, 1)× (0, 1) ⊂ R2

u infinitely often differentiable =⇒ u ∈ Hk(Ω) with k = ∞
Therefore convergence order q = min{k, p + 1} = p + 1.
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Elliptic Test Problem: Mesh and FEM Solution with Order p = 1

Extremely Coarse Mesh Linear Lagrange Elements (p = 1)

This mesh has Ne = 26 elements and Nv = 20 vertices.
DOF is equal to Nv for linear Lagrange elements.
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Elliptic Test Problem: Convergence Study with Linear Lagrange

Lagrange elements with p = 1
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 20 1.160e–02 1.077e–01 N/A N/A
1 104 65 65 7.031e–04 2.652e–02 4.06 2.02
2 416 233 233 4.501e–05 6.709e–03 3.95 1.98
3 1664 881 881 2.835e–06 1.684e–03 3.98 1.99
4 6656 3425 3425 1.776e–07 4.214e–04 3.99 2.00

Same results as presented before. Additional information includes
E2

r which is the raw data that appears in the GUI along with
statistical information about the mesh.
Note: Number of vertices Nv was obtained using LiveLink with
MATLAB. See tech. rep. HPCF-2010-8.
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Elliptic Test Problem: FEM Solutions with p = 1 and p = 2

Linear Lagrange (p = 1) Quadratic Lagrange (p = 2)
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Elliptic Test Problem: Lagrange Elements of Orders p = 2 and p = 3

Lagrange elements with p = 2
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 65 4.351e–05 6.596e–03 N/A N/A
1 104 65 233 1.259e–06 1.122e–03 5.88 2.56
2 416 233 881 2.076e–08 1.441e–04 7.79 2.96
3 1664 881 3425 3.294e–10 1.815e–05 7.94 2.99
4 6656 3425 13505 5.180e–12 2.276e–06 7.97 3.00

Lagrange elements with p = 3
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 136 6.991e–06 2.644e–03 N/A N/A
1 104 65 505 2.031e–08 1.425e–04 18.56 4.21
2 416 233 1945 7.460e–11 8.637e–06 16.50 4.04
3 1664 881 7633 2.834e–13 5.327e–07 16.22 4.02
4 6656 3425 30241 1.095e–15 3.309e–08 16.10 4.01

Matthias K. Gobbert and David W. Trott Mathematics and Statistics, UMBC
10 /
12



Problem Statement FEM Theory Test Problem Conclusions

Elliptic Test Problem: Lagrange Elements of Orders p = 4 and p = 5

Lagrange elements with p = 4
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 233 6.634e–09 8.145e–05 N/A N/A
1 104 65 881 1.467e–11 3.830e–06 21.27 4.41
2 416 233 3425 1.578e–14 1.256e–07 30.49 4.93
3 1664 881 13505 1.605e–17 4.006e–09 31.36 4.97
4 6656 3425 53633 1.595e–20 1.263e–10 31.71 4.99

Lagrange elements with p = 5
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 356 7.656e–10 2.767e–05 N/A N/A
1 104 65 1361 1.421e–13 3.770e–07 73.39 6.20
2 416 233 5321 3.421e–17 5.849e–09 64.45 6.01
3 1664 881 21041 8.306e–21 9.114e–11 64.17 6.00
4 6656 3425 83681 1.819e–24 1.349e–12 67.58 6.08
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Conclusions and Live Demonstration

Conclusions:

COMSOL: behaves as predicted by theory for Lagrange elements on triangular
meshes in 2-D.

Education: COMSOL can be used to demonstrate FEM theory

Applications: tests of this type can guide choice of finite elements

Limitation of GUI: convergence study entirely in the GUI of COMSOL;
however, the refinement level r and polynomial degree p cannot be
programmed as parameters in a parameter sweep ⇒ consider using COMSOL’s
LiveLink for MATLAB!

Support: tech. rep. HPCF–2010–8 at www.umbc.edu/hpcf > Publications,
includes the mph-file and m-files for LiveLink for MATLAB

Demonstration:

Loads mph-file as starting point: (i) sets up domain, PDE, BC; (ii) chooses
linear Lagrange (p = 1) with ‘extremely coarse’ mesh and no refinement
(r = 0); (iii) after solution gives 3-D view of solution and square of FEM error
by post-processing integration

Shows how to obtain refined meshes for r = 1, 2, . . . and their solutions
including square of error
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