Phonon tunneling loss solver for micro- and nanomechanical resonators

Garrett D. Cole^{1,2}, Ignacio Wilson-Rae³, Markus Aspelmeyer¹

¹Faculty of Physics, University of Vienna ²Center for Micro and Nano Structures, Vienna University of Technology ³Department of Physics, Technical University Munich

<u>Acknowledgements</u>: Katharina Werbach, Michael R. Vanner (UniVie) Yu Bai, Eugene A. Fitzgerald (MIT)

Controlling Damping in Resonators

Goal: quantitative prediction of the mechanical quality factor

Metrology

Scanning probe and magnetic resonance force microscopy → Improved imaging and smaller resolvable feature size

Communications

Wireless filters, programmable oscillators, and on-chip clocks → Low power narrowband filters and frequency references

Sensitive probes for force, mass, and position measurement \rightarrow <u>Single-particle sensing, operation at the quantum limit</u>

Approach: combine FEM-based solver with characterization of micromechanical resonators

Four key factors contribute to total dissipation

First two mechanisms are well understood:

1. <u>Fluidic</u>: results from air flow around moving structure or squeeze-film effects from trapped gases

2. <u>Thermoelastic</u>: strain driven thermal gradient dissipated via irreversible heat conduction

1: Langlois (1962), Griffin (1966), Blech (1983) | 2: Zener (1937), Lifshitz (2000), Duwel (2005)

Four key factors contribute to total dissipation

Remaining mechanisms require further investigation:

3. <u>Materials</u>: intrinsic to the specific microstrucutre, e.g. two-level fluctuators in amorphous materials (SiO_2)

4. <u>Anchor</u>: acoustic transmission from the resonator into the supporting medium (i.e. phonon tunneling)

(3) Mihailovich & MacDonald (1995), Yasumura (2000) | (4) Wilson-Rae (2008)

Anchor Loss: Elastic Wave Transmission

Lossy contact pads

• Fundamental loss mechanism in all suspended resonator structures

- temperature independent process; intrinsic limitation to quality factor
- Previous approaches to modeling this process are quite cumbersome
 - simulations include large contact area; artifical loss introduced to substrate
 - rigorous solution to elastic wave propagation beyond suspension points

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter, Nature (2009)

Phonon Tunneling Concept

Mechanical Resonator (Phononic Cavity)

Optical Resonator (Photonic Cavity)

- Goal: calculate scattering modes of mechanical resonator
- Analogy: resonator as a mechanical Fabry-Perot interferometer
 - transmission and reflection of phonons at 3D-1D junction
- Resonator \rightarrow phononic waveguide: 4 branches lacking infrared cutoff
 - compression (c), torsion (t), vertical (v), and horizontal (h) bending
- Phononic modes of resonator/substrate calculated via elasticity theory
 - inverse aspect ratio (d/L) yields natural small parameter

Phonon Tunneling Q-Solver

$$\frac{1}{Q} = \frac{\pi}{2\rho_s\rho_R\omega_R^3} \int_q \left| \int_S \mathrm{d}\bar{S} \cdot \left(\boldsymbol{\sigma}_q^{(0)} \cdot \bar{u}_R' - \boldsymbol{\sigma}_R' \cdot \bar{u}_q^{(0)} \right) \right|^2 \delta[\omega_R - \omega(q)]$$

- Coupling of the free modes of the substrate and suspended resonator
 - applying Fermi's Golden Rule to phonon decay with the interaction Hamiltonian between the resonator volume and supports
- Calculation enabled by a standard eigenfrequency analysis via FEM
 - resonator mode and stress distribution via COMSOL
 - cylindrical modes assumed for support; substrate modelled as elastic half-space

• Simple beam geometries tested to ascertain errors analytical model in numerical simulation

- plot: results for 1x1 µm² bridges with aspect ratios from 15:1 to 40:1
- Compares well with analytical expressions developed previously
 - FEM-derived Q values scale as length⁵ for doubly-clamped beams
 - we record a maximum error of 20% for this initial test (failure of the weak coupling approx.)

D. M. Photiadis, et al., Appl. Phys. Lett. (2004) | I. Wilson-Rae, Phys. Rev. B (2008)

Initial Verification of Numerical Solver

Experiment: Free-Free Resonators

- Ideal resonator design for isolating support-induced losses
- Geometry variation with ~ constant frequency & surface-to-volume ratio

K. W. Wang, et al., J. MEMS (2000) | X. H. Huang, et al., New J. Phys. (2005)

Fabricated Free-Free Resonator

- Single-mask bulk micromachining process, excellent geometric control
- XeF₂ provides near infinite selectivity in Ge etch over GaAs/AIAs DBR

G. D. Cole, Y. Bai, E. A. Fitzgerald, and M. Aspelmeyer, Appl. Phys. Lett. 96, 261102 (2010)

Cryogenic Optical Fiber Interferometer

- Operation from 300 K to 20 K (4 K possible with radiation shielding)
- Turbo-pump equipped for high-vacuum operation (2.5 × 10⁻⁷ millibar)

G. D. Cole, et al., IEEE MEMS Conference (2010)

Dissipation Characterization

- Two methods for Q determination: white noise and resonant driving
 - white noise excites all modes simultaneously, Lorentzian fitting for Q
 - coherent drive and cessation for free-ringdown response, exponential fit

Compiled Results: $R = 116 \mu m$

Compiled Results: $R = 131 \ \mu m$

Conclusions and Future Work

		Solver Parameters		
•	VVC	Analysis types	General Eigenfrequency Adaptive Advanced	ating
	sup • (Solid, Stress-Strain (smsld) Quality Factor Static Static elasto-plastic	Eigenfrequency Desired number of eigenfrequencies: 4 Search for eigenfrequencies around: 0	nators
	• (i	Eigentrequency Quality Factor Transient Sol Frequency response StaParametric TinQuasi-static transient	Linear system solver Linear system solver: Direct (SPOOLES)	ries Ie
•	Nov	Parametric Stationary segregated	Settings	Ś
	resc	Parametric segregated Time dependent segregated	Matrix symmetry: Automatic	20 K
•	We	Adaptive mesh refinement Optimization/Sensitivity	COMSOL MULTIPHYSICS	es of
	resc	Plot while solving Plot Settings	200	sition
	• (6. CC)n
•	Full		COMSOL	
			OK Cancel Apply Help	ן

Heteroepitaxial Monocrystalline DBR

- 40-period GaAs/AIAs crystalline multilayer grown on a Ge substrate
 - Ge sacrificial material allows for increased flexibility in processing
- Surface roughness due to lattice mismatch limits reflectance (99.87%)

AlGaAs Micromirror Process Flow

- 1. <u>Resonator pattern</u>: optical lithography with contact aligner
- 2. <u>Define mechanics</u>: $SiCl_4/N_2$ ion etch through DBR to Ge substrate
- 3. <u>Strip masking layer</u>: acetone and isopropanol rinse, O₂ plasma
- 4. <u>Undercut</u>: selective Ge dry etch with noble gas halide, XeF₂

G. D. Cole, Y. Bai, E. A. Fitzgerald, and M. Aspelmeyer, Appl. Phys. Lett. 96, 261102 (2010)

Experimental Parameters

- Fixed central resonator dimensions: 130 x 40 µm
- Varying auxiliary beam attachment points (8)
 - 13, 21, 29, 37.4, 44, 50, 56, and 62.5 µm
 - aux. beams sample resonator mode shape
- Two distinct outer radii of 90 and 105 µm
 - investigate Q-variation in aux. beam length
- Undercut process monitoring structures

Mode Identification

• FEM accurately captures geometric dependence of the resonances

Mode Identification

• Antisymmetric mode displays hardening-spring Duffing response

Antisymmetric Mode Dissipation

• Dissipation shows no dependence on auxiliary beam position

Cavity-Assisted Optomechanical Cooling

Requirements

- •resolved-sideband regime ($\kappa < \omega_m$)
- •absence of optical absorption
- •shot-noise limited optical pump
- •weak coupling to environment
 - → cryogenic cavity (mK temp.)
 - \rightarrow large Q (reduce dissipation)

To achieve full quantum control:

$$k_B T/\hbar Q <<\kappa <<\omega_m, g_0 \alpha$$

zero entropy mechanics strong coupling