COMSOL Conference, Boston, 10/8/2010

Parameter Optimization for FEM based modeling of singlet oxygen during PDT using COMSOL

Xing Liang, Ken Kang-Hsin Wang, and Timothy C. Zhu

Department of Radiation Oncology, School of Medicine, University of Pennsylvania

- Introduction
- Theory for PDT dosimetry model
- Optimization results
- PDT dosimetry quantity prediction for prostate using COMSOL
- Conclusions

Introduction

- Theory for PDT dosimetry model and optimization
- Optimization results
- PDT dosimetry quantity prediction for prostate using COMSOL
- Conclusions

Introduction

- Photodynamic therapy (PDT) is an important treatment modality for cancer and other localized diseases.
- In PDT, photosensitizers excited by light react with ground state oxygen, which leads to generation of singlet oxygen the major cytotoxic agent - to kill the surrounding tissues and cells.
- Compared with other treatment modalities, PDT has advantages including non-ionizing, localized photon delivery and better cosmetic outcome.

Introduction

Jablonski Diagram for Type II PDT interaction

Sensitizer (PS) + light + oxygen $({}^{3}O_{2}) \rightarrow singlet oxygen ({}^{1}O_{2})$

Introduction

Apparent reacted singlet oxygen $[^{1}O_{2}]_{rx}$ was introduced as a PDT dosimetry quantity to better predict the PDT treatment outcome than PDT dose

By COMSOL + MATLAB

By COMSOL

Flow chart for PDT photophysiological parameter optimization and dosimetry prediction

- Introduction
- Theory for PDT dosimetry model and optimization
- Optimization results
- PDT dosimetry quantity prediction for prostate using COMSOL
- Conclusions

Theory for PDT dosimetry model

Light diffusion equation

$$\mu_a \varphi - \nabla \cdot \left(\frac{1}{3\mu_s} \nabla \varphi\right) = S$$

 $[^{\circ}O_{2}] + \beta$

→ COMSOL

Photo chemical equations

$$\frac{d[S_0]}{dt} + \left(\xi \frac{\varphi([S_0] + \delta)[{}^{3}O_2]}{[{}^{3}O_2] + \beta}\right)[S_0] = 0$$

$$\frac{d[{}^{3}O_2]}{dt} + \left(\xi \frac{\varphi[S_0]}{[{}^{3}O_2] + \beta}\right)[{}^{3}O_2] - \left(g \left(1 - \frac{[{}^{3}O_2]}{[{}^{3}O_2](t=0)}\right)\right) = 0$$
MATLAB
$$\frac{d[{}^{1}O_2]_{rx}}{dt} - \left(\xi \frac{\varphi[S_0][{}^{3}O_2]}{[{}^{3}O_2]}\right) = 0$$

 φ Light fluence rate [S_0] Ground sensitizer concentration

dt

[${}^{3}O_{2}$] Ground triplet oxygen concentration [${}^{1}O_{2}$]_{rx} Reacted singlet oxygen concentration

Theory for optimization model

Fitting results [ξ , σ , β , g] and $[{}^{1}O_{2}]_{rx}$

- Introduction
- Theory for PDT dosimetry model and optimization
- Optimization results
- PDT dosimetry quantity prediction for prostate using COMSOL
- Conclusions

Parameters	Final fit	Apr Fit	Apr and Aug Fit	Previous fit [1]	Published values
ξ (cm²/s/mW)	2.0×10 ⁻³	5.0×10 ⁻³	3.9×10 ⁻³	2.1×10 ⁻³	3.7×10 ⁻³ [2]
σ (1/μM)	11.2 ×10 ⁻⁵	6.6×10 ⁻⁵	11.5×10 ⁻⁵	7.6×10 ⁻³	7.6×10 ⁻³ [2]
β (μM)	11.9	11.9	11.9	11.9	11.9 [3]
<i>g</i> (μM/s)	0.8	0.62	0.56	0.69	_
$I^{1}O_{2}J_{rx,sh}$ (mM)	0.41	0.46	0.41	0.74	_

[1] Wang et al., J. Biophoton, 2010.

[2] Mitra et al., Photochem. Photobiol, 2005.

[3] Georgakoudi et al., Photochem. Photobiol. 1997.

Final fitting results including experimental data from All data

Fitting results: apparent reacted singlet oxygen concentration All data April data April and August data

- Introduction
- Theory for PDT dosimetry model and optimization
- Optimization results
- PDT dosimetry quantity prediction for prostate using COMSOL
- Conclusions

^{[1}O₂]_{rx} prediction using COMSOL

Prostate geometry for prediction model

^{[1}O₂]_{rx} prediction using COMSOL

PDT dosimetry quantities for treatment up to 300 s in a homogeneous prostate

Slide view of [¹O₂]_{rx}

Isosurface of $[^{1}O_{2}]_{rx}$ at 0.41 mM

Isosurface of light flucence

$[^{1}O_{2}]_{rx,sh}$ prediction using COMSOL

30 J/cm²

75 J/cm²

150 J/cm²

Conclusions

- PDT model including light diffusion and PDT kinetics equations
- Optimized photo-chemical parameters in the PDT model
- PDT prostate model with homogeneous properties
- Prediction of PDT dosimetry quantities for treatment

Thank you!