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Abstract: The Fibroscan® (Echosens, Paris, 
France) device based on vibration–controlled 
transient elastography (VCTE) is used to non–
invasively assess liver stiffness correlated to the 
hepatic fibrosis. Stiffness is quantified by 
measuring the velocity of a low–frequency shear 
wave traveling through the liver, which is 
proportional to the Young’s modulus E. It has 
been demonstrated that E is highly correlated 
with liver fibrosis stage as assessed by liver 
biopsy. To study the emergence of a two shear 
wave with different velocity in liver detected 
with the Fibroscan® on different in vivo cases,  
simulations with finite element models (FEM) on 
a 3D anatomical model of liver and ribs can help 
to understand this propagation patterns. Indeed, 
the shape and the direction of the shear wave 
front induced by the Fibroscan® probe in the 
liver are not entirely known. 
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1. Introduction 

Elastography is a branch of tissue 
characterization which encompasses a large panel 
of techniques used to measure or describe the 
elastic properties of tissues. In the following we 
are only concerned with the stiffness which is 
defined by the Young’s modulus (expressed in 
Pascal). 

Elastographic techniques can be categorized 
into three groups depending on the way to 
generate a mechanical excitation of the tissues. In 
static elastography [1], developed by Ophir et al., 
the tissues are insonified before and after a small 
compression and the speckle distortion due to the 
compression is related to the stiffness of the 
medium. A second set of applications use the 
deformations generated in the tissues by the 
natural movements of the organs [2], [3]. Finally, 
dynamic elastography relies on the study of the 
propagation of low frequency shear waves 
generated either monochromatically in the case of 
magnetic resonance elastography (MRE) [4] and 
sonoelastography ([5]) or transiently in the case 
of transient elastography [7-9]. The impulse 

excitation used in transient elastography is 
generated either by an external vibrator or by a 
transient ultrasound radiation force [6], [7]. 

In vivo measurements were obtained using these 
different elastographic techniques on a variety of 
organs such as breast, prostate [8]. Fibroscan® 
(Echosens, Paris, France) is used to assess liver 
fibrosis by measuring liver stiffness. Fibroscan® 
is a parametric, transient elastography based 
technique which provides an average value of the 
Young’s modulus in a region of interest 
comprised between 25 and 65 mm below the 
skin.  This device is non-invasive, fully 
automatic and gives a result within a few 
minutes. Its main advantages are its ease of use, 
its good reproducibility and a very good 
acceptance by patients. Clinical interest of liver 
stiffness measurement using Fibroscan®

 has been 
largely validated for adult patients with chronic 
liver diseases [9]. About 900 devices sold 
throughout the world, mainly in Europe and 
Asia. Echosens has over 300 peer-reviewed 
clinical publications to its credit.  
 
2. Method & Material 
Liver elasticity measured by Fibroscan® ranges 
between 2–75kPa and corresponds to a shear 
wave velocity range of 0.8–5 m/s. The shear 
wave is mechanically induced by the 
displacement of a piston controlled with an 
apodized 20 ms period sinusoidal impulse (see 
Figures 1 & 2).  

 
Figure 1. Fibroscan® Probe. 
 
The movements of tissues are observed in time 
using an ultrafast ultrasound scanner (3.5 MHz) 
with a pulse repetition frequency of 6000Hz. 
Inter-correlation method between successive RF 
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lines provides the strain image in the plane 
where the horizontal axis represents the time and 
the vertical one the depth. Figure 3, we have 
reported the amplitude of the strain in grayscale. 
We observe the shear wave. 
  

 
Figure 2. Acqui sition. 
 
From the slope of the negative wavefront, we 
estimated the shear wave velocity and we then 
deduced the Young’s modulus using the 
following formula 

23 SVE ρ=       (1) 

where ρ is the medium density and Vs the shear 
wave velocity. 

 
Figure 3. Elastogram or Strain Image. 
 
This work used the Structural Mechanics Module 
available in COMSOL Multiphysics to develop 
computational models for the previously 
presented experiment. 
 
In the first simulation we have verified the 
goodness of fit between the computational model 
and the analytical one. That shown that, in this 
case, a good spatio-temporal grid of computation 
may be reached. 
 
In the second simulation, we have verified the 
goodness of fit with a true experiment on a 
phantom which mimics homogeneous tissues 
(see Figure 4). That is important for us because 
our goal is to dispose of a virtual experiment. We 
also expect that these results may highlight the 

uncertainty of measurement, noise due to the 
observation device. 
 

 
Figure 4. Photography experience 
 
The last simulation consisted, with a 3D model, 
of generating the shear wave and the propagation 
induced by a piston hitting the phantom or the 
liver. The liver surface mesh has been created 
and distributed by the IRCAD (Strasbourg, 
France [10]).  
 
3. Theoretical aspects 
In this section, we present briefly the analytical 
expression of the response at an impulsive stress 
of a linear, isotropic, purely elastic, semi-infinite 
and quasi-incompressible medium.  

In [11], the authors yielded the analytical solution 
of the problem based on the elastodynamic 
Green's functions. These functions are 
decomposed into a term of compression, a shear 
term and a coupling term. The latter term has 
been often neglected. It has been studied by 
Sandrin et al. [12] for a non punctual stress. They 
gave the following analytical expression of the 
media Green’s function, in the case of a 
cylindrical piston1:  
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where R is the radius of the piston, z and t 
respectively the depth and the time.  The Green’s 
function g takes into account both diffraction and 
coupling effects for circular sources on 
homogeneous and isotropic half-space media. 

                                                           
1 Equation (10) corresponds to the equation (36) of reference 
[11], where we have omitted the term a which is given by the 
expression (3). 
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The stress, induced by the piston and expressed 
in Pascal, writes 
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where )(tmp denotes the displacement of the 

piston. Because the different assumptions, the 
displacement field reduced to only one non-null 
component along z-axis. The expression is given 
by 
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After few calculations, we had  
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where pm& denotes the first derivative. 

 
4. Use of COMSOL Multiphysics  

4.1. Validation model 
For the model validation (comparison with 
analytical and experimental results) is used an 
axisymmetric model. The Young’s modulus 
given by measurement of three identical 
phantoms elasticity is 6 kPa. The Poisson’s ratio 
is fixed at 0.4999, that corresponds to an 
incompressive medium. Equation 1, with ρ = 
1kg/L, implies a shear wave velocity propagation 
of 1.41 m.s-1. The maximum size of the finite 
element mesh is 1 mm for a total of 17669 
meshes. This mesh size is a good compromise 
between computing time and spatial resolution. 
Absolute tolerance is set at Atol = 10-8. 
 
If the piston adheres to the surface of the 
phantom (Figure 5), computation time is 
approximately of 10 minutes on Intel Core2Quad 
Q6700 @ 2.67 GHz and 16Go of RAM to 
simulate 80 milliseconds of propagation.  On the 
other hand, if piston is not adhering with 
phantom surface, computation time is 
approximately of 80 minutes. This problem, 
coming from the dynamical aspect of the 

resolution, is well-known and has been reported 
many times in the user community. The advice 
given by Comsol is imperfect. 

 
Figure 5. Longitudinal displacements in the 2D plane, 
induced by the piston at t = 7 ms. Colorbar is 
expressed in µm. 
 

4.2. 3D model 
In this section, we focused on a problem to take 
into account 3D objects in Comsol. Our 
objective was to implement a numerical 3D 
model for the liver, extracted from CT images, in 
its environment (heterogeneity, ribs, etc). 
The anatomical model used comes from the 
IRCAD (Strasbourg, France). It contains the 
surface mesh of liver and ribs in vtk format 
(Figure 6). The import of this format in 
COMSOL is not an easy task without a CAD 
software from a third company.  
Currently, we are interested in the propagation of 
shear wave generated by piston acting only on 
the liver. This liver has a volume of about 1.4 
liters for a total of 400 984 tetrahedra (size <5 
mm) and 1 742 796 degrees of freedom.  
 

 
Figure 6. Geometry of the anatomy to consider 
 



5. Results  

5.1. 2D model of phantom 
Simulation of shear wave propagation has 
validated the analytical and experimental 
measurements, in the good agreement with the 
expected Fibroscan®’s accuracy.  
This comparison is reported, figures 7 to 9, for 
FEM, which reveals rebounds on lower fixed 
base (70 mm deep) which is due to the finite 
condition. 

 
Figure 7. Comparison between analytical and 
simulated deformations in grayscale logarithmic. 
 

 
Figure 8. FEM and analytical results: deformation 
amplitudes at 11 mm of depth. 
 
Figures 7-9 show that the shear wave propagates 
correctly in the mesh. We also verify on the 
amplitudes that the coupling effects are properly 
taken into account. The visible differences in the 
top-right of the right image of the figure 7 show 
the capability of FEM to solve propagation in a 
realistic bounded medium. 
 

 
Figure 9. FEM and analytical results: deformation 
amplitudes at 20 mm of depth. 
 
Figures 10 and 11 compare the deformations 
obtained by experiment and finite element 

simulation. Let us notice that, in the 
experimental case, it is difficult to properly 
respect the axi-symmetric geometry and the 
exact shape of the piston displacement. 

 

 
Figure 10. FEM and experimental results: 
deformation amplitudes at 11 mm of depth. 

 

 
Figure 11. FEM and experimental results: 
deformation amplitudes at 20 mm of depth. 
 
Noticeable differences are mainly due to the 
precision measurement of Young's modulus by 
Fibroscan®. At first, a small lag of 0.1 ms/cm 
appears between the two minima, corresponding 
to 0.17 kPa for the full range. That may be 
explained by the precision of Fibroscan®. Indeed, 
the value of Young's modulus chosen in the 
finite element model is provided by a 
measurement effected on the phantom. On the 
other hand, we observe on both figures 10 and 11 
that the width of the impulse in the phantom 
increases with depth. That may be due to the 
weak viscosity of the phantom. It will be tested 
in the future, using viscoelastic Maxwell model. 

5.2. Anatomical model 
In 3D simulations, preliminary results are 
encouraging. Observations showed that the shear 
wave front is first spherical and then progressively 
deforms during propagation, according to the 
geometry of the liver. 
Figure 12 shows the displacements for an 
absolute tolerance of only 10-5. Indeed, in this 
geometry, piston is not adhering with liver 
surface, therefore it is unfortunately impossible 



to use the absolute tolerance of 10-8 that needs an 
unreachable time of computation (much more 
than 2 weeks).  

 
Figure 12. Example of displacement caused by a 
piston in the liver. 
 
6. Conclusions 
This study reveals promising results, regarding 
the feasibility to use FEM simulations, to 
understand the behavior of different tissue types 
and organs for Fibroscan® scanning. 3D 
simulations design will be improved using a 
complete thoracic and abdominal anatomy, to 
study potential sources of aberrant propagation 
patterns and velocity measures. 
The results presented in this paper demonstrate 
the capabilities of a COMSOL Multiphysics to 
solve shear wave propagation in impulse 
elastography 2D problem.  
This work initially focuses on solving problems 
in a uniform infinite half-space for which 
analytical solutions exist. After showing good 
agreement with these solutions, comparison with 
experimental data is available. 
By including the measurement uncertainties, the 
shear wave arrival time and frequency content 
agree with experimental data.  
Unfortunately, these results are not extrapolating 
on 3D model for a reasonable computation time.  
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