COMSOL CONFERENCE ⁴ 2010

NOVEMBER 17-19 2010, PARIS, FRANCE

et

Modeling of Retinal Electrical Stimulation Using a Micro Electrode Array Coupled with the Gouy-Chapman Electrical Double Layer Model to Investigate Stimulation Efficiency

F.Dupont, R.Scapolan, J-F.Bêche, C.Condemine, M.Belleville and P.Pham

CEA, LETI, Minatec Campus

Outline

leti

Florent Dupont - florent.dupont@cea.fr - 2010/11/19

leti ICE -GCE C_{EDL}

œ

Electrokinetic Equation

Model Validation: Impedance Spectroscopy

CEA MEA-RETINE

F.Sauter, V.Agache

6/12

leti **Cell's response: Time Domain Hodgkin Huxley Model** 0.06 Hodgkin-Huxley (HH) 0.04 **Neuron Electrical Activity Model** 0.02 **Action Potential** $\frac{a}{2\rho_i}\frac{\partial^2 V_m}{\partial x^2} = C_m \frac{dV_m}{dt} + \overline{g}_{Na}m^3h(V_m - E_{Na})$ $+ \overline{g}_K n^4(V_m - E_K) + \overline{g}_L(V_m - E_L)$ 0 100 mV -0.02 -0.04 3 ms Propagation Transmembrane potential -0.06 temporal equation term -0.08 $\frac{dm}{dm} = \alpha_m (1-m) - \beta_m m$ 0.002 0 0.004 0.006 0.008 **Transmembrane potential (V_m)** dh Coefficient Temporal $-\alpha_h(1-h)-\beta_hh$ ➢ Rest V_m = −60/−70mV Equations dt \succ Triggering Threshold at V_m= -50mV $\frac{dn}{dt} = \alpha_n (1-n) - \beta_n n$ Large amplitude and auto-regenerated œ

e

Hodgkin-Huxley Model for RGC

 \Rightarrow 1D modeling for the RGC membrane

Looping Fast Fourier Transform with COMSOL

leti

œ

Conclusion

- Modeling used as a prediction tool
- Coupling FFT (MATLAB) with COMSOL
- Fast Fourier Transform (FFT)
 - → Select data spectrum

leti

- → Reducing the number of harmonics (threshold)
- Complete numeric FEM Test Framework

Future Work

Tests of different waveform/electrode shapes
Tests with multi-signal patterns