

On a particle tracking technique to predict disinfection in drinking water treatment systems.

COMSOL Conference, Paris, 2010

B.A. Wols, J.A.M.H. Hofman, W.S.J. Uijttewaal, J.C. van Dijk

Watercycle Research Institute

Van Remmen UV Techniek

> centre for sustainable water technology

Stochastic differential equation for Brownian motion:

$$dX_{t} = f(t, X_{t})dt + g(t, X_{t})dW_{t}$$

 $X_t(0) = X_0$

Increments dW_t generated from random number generator

4

Particle tracking technique – numerical solution

The diffusion part, Euler scheme:

$$Y_{n+1} = Y_n + \frac{dD}{dx}\Delta t + \sqrt{2D}\Delta W_n$$

Milstein scheme:

$$Y_{n+1} = Y_n + \frac{dD}{dx}\Delta t + \sqrt{2D}\Delta W_n + \frac{1}{2}\frac{dD}{dx}\left(\left(\Delta W_n\right)^2 - \Delta t\right)$$

Test case: wall treatment

Diffusion coefficient:

Test case: channel flow Elder

Logarithmic velocity profile

Parabolic diffusion profile

Theoretical dispersion coefficient of: $D_L = 5.86u_*h$

- 5.00*u**n

KWR

Implemer	ntation in	COMSOL		
	Aultiphysic	o with k o turbulo	naa madal	
	numpriysic			
Flow fields	are captur	ed from fem-strue	cture in Matlab	
Particle trac	cks are res	olved in Matlab		
WR	Van Remmen UV Techniek	wetsus	T Delft	

Application water treatment

Ozone installation

Application water treatment

Flow fields

k-ε turbulence model

KWR

Application water treatment – Particle trajectories

KWR

Conclusions

Development of particle tracking routine

- Using COMSOL multiphysics with a k-ε turbulence model
- That obeys diffusion and advection
- No problems at the walls

Optimization of drinking water treatment installations established

Van Remmen UV Techniek

