TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Die Ressourcenuniversität. Seit 1765.

Numerical 3D-FEM-Simulation made by COMSOL Multiphysics of a Microwave Assisted Cleaning System for a Diesel Sooty Particle Filter and its Experimental Validation

Dr.-Ing. Ivan Imenokhoyev, Albrecht Matthes, Prof. Dr.-Ing. habil G. Walter

International COMSOL Conference, Ludwigsburg 2011, October 26 – 28

TU Bergakademie Freiberg I Institut für Energieverfahrenstechnik und Chemieingenieurwesen Deutsches EnergieRohstoff-Zentrum I Fuchsmühlenweg 9 I 09596 Freiberg Telefon +49 (0) 3731 39 - 4498 I Fax +49 (0) 3731 39 - 4555 I www.energierohstoffzentrum.de

Content

		Page
•	Concept for the DPF-System	3
)	Numerical Simulation:	
	• Results	6
)	Experimental Validation:	
	Experimental Station	10
	• Results	11
)	Conclusions	14

Deutsches EnergieRohstoff-Zentrum Technologien für das Nach-Erdölzeitalter

Concept for the DPF-System

- **Methods of Regeneration**
- Active System
- Regeneration by Heating the Soot to the Ignition Temperature by Microwave Radiation
- Engine Management System
- Specifications for Vehicle Construction

Concept for the DPF-System

Relevant parameters for an ideal design of the plant to the heated goods

- 1. Energy Source: Generator (e.g. Magnetron) characterized by Frequency and Output
- 2. Microwave Transfer Element (Geometric Design of the Wave Guide)
- 3. Microwave Applicator (Geometric Design of the MW-Applicator)
- 4. Measurement and Control Devices: Output and Temperature Measurement
- 5. Further:
 - Geometry of the Raw Material
 - Material Properties of the Raw Material
 - Material Properties of the Applicator Walls

Technologien für das Nach-Erdölzeitalter

Concept for the DPF-System

Figure 1: Design of a microwave assisted DPF Cleaning System

Numerical Simulation: Results

Example: Multimode Applicator with an Axial Microwave Discharge

Figure 2: Numerical 3D-Simulation: E-Field and Heat Source Density Distribution

Deutsches EnergieRohstoff-Zentrum Technologien für das Nach-Erdölzeitalter

Numerical Simulation: Results

Example: Multimode Applicator with a Radial Microwave Discharge

Figure 3: Numerical 3D-Simulation: Heat Source Density Distribution

Numerical Simulation: Results

Example: Multimode Applicator with a Tangential Microwave Discharge

Figure 4: Numerical 3D-Simulation: Heat Source Density Distribution

Numerical Simulation: Results

The simulation leads to a couple of possibilities:

- Simulation of different heating mechanism according to the geometry and general conditions of the plant
- Comparison with experimental pre-heating trials
- Optimized plant design according to the good to be heated
- Reduction in production time
 - Reduction in heating-up, processing and cooling time
 - Only heating of the good (no heating of the air volume and walls of the reactor)

A mathematical optimization of the design of a microwave assisted diesel sooty particle filter cleaning system is possible, <u>but</u> an experimental validation is indispensable.

Technologien für das Nach-Erdölzeitalter

Experimental Validation: Experimental Station

Deutsches EnergieRohstoff-Zentrum Technologien für das Nach-Erdölzeitalter

Experimental Validation: Results

Partielly Regenerated Cordierite-honeycomb filter

Figure 5: Regeneration of the loaded filter by microwave radiation

DER Deutsches EnergieRohstoff-Zentrum Technologien für das Nach-Erdölzeitalter

Experimental Validation: Results

Figure 6: *Numerical 3D-Simulation: E-Field Strength, Heat Source Density- and Temperature Distribution*

Technologien für das Nach-Erdölzeitalter

Numerical 3D-Simulation of the Temperature Distribution

Infrared Camera – Temperature Measurement

Back Side at t = 150 s

Figure 7: Results of the experimental validation [Reference: Imenokhoyev, 2007]

Parameter	Model	Experiment
P _{in} , W	572	572
P _{abs} , W	532	545
P _{ref} , W	40	27
P _{abs Wall} , W	0,02	-
η, %	93	95,3
R₀	0,26	0,22
VSWR	1,72	1,56
T ₀ , °C	20	20
T _{max} , °C	165,6	~170

Technologien für das Nach-Erdölzeitalter

Conclusion

- 1 The numerically and experimentally determined temperature field distributions match excellent in quality and quantity.
- 2 The 3D-FEM-models created with COMSOL Multiphysics provide practiceorientated results.
- 3 They can be used for a computer-assisted modeling and optimization of microwave heating.

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Die Ressourcenuniversität. Seit 1765.

Numerical 3D-FEM-Simulation made by COMSOL Multiphysics of a Microwave Assisted Cleaning System for a Diesel Sooty Particle Filter and its Experimental Validation

Dr.-Ing. Ivan Imenokhoyev, Albrecht Matthes, Prof. Dr.-Ing. habil G. Walter

International COMSOL Conference, Ludwigsburg 2011, October 26 – 28

TU Bergakademie Freiberg I Institut für Energieverfahrenstechnik und Chemieingenieurwesen Deutsches EnergieRohstoff-Zentrum I Fuchsmühlenweg 9 I 09596 Freiberg Telefon +49 (0) 3731 39 - 4498 I Fax +49 (0) 3731 39 - 4555 I www.energierohstoffzentrum.de

