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Abstract:
The flux of a fluid in permeable media can

be modelled using a continuous or a multi-
continuous. To link the real system with
the continuous model is mandatory to real-
ize a suitable average of the equations and
of the variables governed by them. The dis-
persion term comes from this averaging but
it is not only a mathematical product of the
modelling. It take in account of an impor-
tant phenomenon that is similar to diffusion
but that differs from it because not depends
from molecular excitement. The dispersion is
due to the intrinsic geometry of the permeable
media that forces the real paths of the flux to
divert from the average one. In this work a
model of the dispersion term is evaluated and
the results are compared with the correspond-
ing cases without it. Granular permeable me-
dia is considered with a compressible flux. The
PDE module of COMSOL is utilized.
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1 Introduction

A robust and rigorous method to model the
flow in a permeable media is based on the av-
erage of the flow equations. The average is
computed on a Reference Elementary Volume.
It must be a small volume (ideally infinitesi-
mal) if compared with the permeable media
domain and it must be large if compared with
the pore-scale of the permeable media so that
when it move a quantity changes not abruptly.
The REV is of crucial importance to build
(and also to test) a continuous model of flow
in permeable media. The volume average of a
some quantity defined in the void part of the
permeable media, is computed as follows

〈η〉 =
1
V0

∫
Ω0

η dV (1)

Where Ω0 is the REV and V0 is its measure.
For the intrinsic average 〈.〉i, i.e. that com-
puted only on the void portion of the REV, is
valid the following equation

〈η〉 = ε 〈η〉i (2)

Where ε = Vvoid/V0 is the porosity.
Moreover the spatial deviation is defined as
follows

η	 = η − 〈η〉i (3)

The aforesaid volumetric average of the flow
equations can be obtained, as reported in [1],
by mean of the Theorem of Local Volumetric
Average. The following equations are deduced
from this theorem.

〈∇η〉 = ∇(ε 〈η〉i) +
1
V0

∫
Ai

ni η dS (4)

〈∇ ·w〉 = ∇ · (ε 〈w〉i) +
1
V0

∫
Ai

ni ·w dS (5)

〈∂tη〉 = ∂t(ε 〈η〉i)−
1
V0

∫
Ai

ni · vi η dS (6)

Where Ai is the interface surface between the
void part and the no-void part of the REV, ni
is the normal to Ai with the sense from no-
void part to void one.
Averaging unknown terms are produced.
These terms are not fully defined by the aver-
age flux variables thus they must be set using
a external theory. In this work, among un-
known terms, the dispersion ones are taken in
account.
In this work a compressible gas in laminar
flow is considered. The gas is composed of
oxygen(O2) and nitrogen(N2) and its temper-
ature is constant. The gas fills fully the (con-
nected)pores of the permable media.
To handle and solve equations is used
COMSOL with its Equation-Based Modeling.



2 Governing Equations

The gas equation of state is

p = ρ R T

(
Y1

M1
+

1− Y1

M2

)
(7)

Where
p is the pressure,
R is the universal gas constant,
T is the absolute temperature,
Y1 is the oxygen mass fraction,
M1 is the oxygen molecular weight,
M2 is the nitrogen molecular weight.
The mass balance of the flux in free space is
expressed by

∂tρ+∇ · (ρ v) = 0 (8)

∂tρ1 +∇ · (ρ Y1 v − ρ D ∇Y1) = 0 (9)

Where
ρ is the density,
v is the velocity,
ρ1 is the oxygen density (ρ1 = Y1 ρ),
D is the diffusion constant (oxygen-nitrogen).
The average of the equation 7 is

〈p〉i = 〈ρ〉i R T
(
〈Y1〉i
M1

+ 1−〈Y1〉i
M2

)
+

+R T

(
〈ρ	 Y 	1 〉i

M1
− 〈ρ

	 Y 	1 〉i
M2

)
Hereafter we take that

ρ	 = 0 (10)

It follows that

〈p〉i = 〈ρ〉i R T

(
〈Y1〉i

M1
+

1− 〈Y1〉i

M2

)
(11)

Using 5 and 6 the averaging of the equation 8
gives

∂t(ε 〈ρ〉i)− 1
V0

∫
Ai

ni · vi ρ dS+

+∇ · (ε 〈ρ v〉i) + 1
V0

∫
Ai

ni · ρ v dS = 0

The algebraic sum of the 2nd and the 4th term

1
V0

∫
Ai

ni · (v − vi) ρ dS

is zero because

ni · (v − vi) = 0 (12)

Indeed, the left side of 12 is the normal com-
ponent of the relative velocity of the fluid on
the solid, that must be zero (i.e. the fluid does
not enter into the solid and does not separate
from it). Using the property of the average
operator we can write

〈ρ v〉i = 〈ρ〉i 〈v〉i +
〈
ρ	 v	

〉i
The 2nd term of the right side is a dispersion
term, but using 10 it is null. So the averaged
mass balance, i.e. the mass balance of flux in
permeable media, is expressed by

∂t(ε 〈ρ〉i) +∇ · (ε 〈ρ〉i 〈v〉i) = 0 (13)

Using 5 and 6, defining

Γ1 = ρ Y1 v − ρ D ∇Y1

the averaging of the equation 9 gives

∂t(ε 〈ρ1〉i)− 1
V0

∫
Ai

ni · vi ρ1 dS+

+∇ · (ε 〈Γ1〉i) + 1
V0

∫
Ai

ni · Γ1 dS = 0

The algebraic sum of the 2nd and the 4th term
is

1
V0

∫
Ai

(ni · (v − vi)ρ1 − ni · ρ D ∇Y1) dS

Due to 12 and taking the diffusion flux equal
zero on the interface solid-fluid, it is zero. The
averaged equation becomes

∂t(ε 〈ρ Y1〉i) +∇ · (ε 〈Γ1〉i) = 0 (14)

Using the property of the average operator and
10 we can write

〈Γ1〉i = 〈ρ〉i 〈Y 1〉i 〈v〉i + 〈ρ〉i
〈
Y 	1 v	

〉i
+

−D 〈ρ〉i 〈∇Y1〉i

(15)
Using 4

ε 〈∇Y1〉i = ∇(ε 〈Y1〉i) + 1
V0

∫
Ai

ni Y1 dS =

= ε∇〈Y1〉i + 1
V0

∫
Ai

ni (Y1 − 〈Y1〉i) dS

(16)
The last equality is obtained by mean of

∇ε = − 1
V0

∫
Ai

ni dS (17)

that is deduced from 4. The following equa-
tion is taken as arbitrary hypothesis.

1
V0

∫
Ai

ni (Y1 − 〈Y1〉i) dS = 0 (18)



The dispersion term is

ε 〈ρ〉i
〈
Y 	1 v	

〉i
(19)

It is modelled as follows〈
Y 	1 v	

〉i
= −α 1

Vr
〈v〉i ·〈v〉i Lr∇〈Y1〉i (20)

Where α is an dimensionless parameter,
Vr is a reference velocity,
Lr is a length reference.
So the averaged oxygen mass fraction balance
is expressed by

∂t(ε 〈ρ〉i 〈Y1〉i) +∇ · (ε 〈ρ〉i 〈Y1〉i 〈v〉i +
−ε 〈ρ〉i α 1

Vr
〈v〉i · 〈v〉i Lr ∇〈Y1〉i +

−ε 〈ρ〉i D∇〈Y1〉i) = 0
(21)

The following Ergun’s model, as reported in
[2], is used for momentum balance of flux in
permeable media.

−∇〈p〉i = µ 〈v〉i 1
K

(0.83 + 0.19 R̂eK
) (22)

Where

R̂eK
=
ρ
∣∣∣〈v〉i∣∣∣
µ

√
K

ε
(23)

is the Reynolds number based on permeability,

K =
d2
p ε

3

36 k (1− ε)2
(24)

is the permeability computed by mean of the
Kozeny-Carmans correlation [2].

3 Methods

To evaluate the effect of the dispersion term
19, it is simulated a blender (picture 1) with
2 inlet and 1 outlet. Through the inlet on the
left side comes oxygen, through the other the
nitrogen. The blender is filled with a granu-
lar media. The aim is to study the influence
of the dispersion term on the course of 〈Y1〉i
along the blender. To do this α takes a suc-
cession of values. The model is 2D.

4 Numerical Model

The simulations are performed with the soft-
ware COMSOL 4.2. The elements are tri-
angular (picture 2) generated with a free
mesh procedure with shape function linear

and quadratic. All the simulations are static.
Equation-Based Modelling is utilized. SI unit
system is utilized. Except the inlets and the
outlet, on all the boundaries there is the fol-
lowing constrain

〈v〉i · n = 0 (25)

The diffusion flux is zero on all boundaries ex-
cept the inlets. The dispersion flux are zero
on all boundaries except the inlets and the
outlet. The pressure on the outlet is con-
strained to 1.0bar, 〈Y1〉i = 1 on the O2-inlet
and 〈Y1〉i = 0 on the N2-inlet. On the in-
lets is imposed an input mass flux equal to
0.001[m/s] ·1.283[kg/m3]. The temperature is
T = 300K.The porosity is ε = 0.4. The par-
ticle diameter is dp = 0.0001. The tortuosity
factor is k = 5. The D is considered constant.

5 Experimental Results

The results reported in the next pictures and
graphs, are calculated for α = (0 : 5 : 50). In
picture 3 is shown 〈Y1〉i at y = 0, in picture 4
is shown 〈Y1〉i at y = 2.5 (the outlet). In the
pictures from 5 to 15 is shown a 2D surface
plot of 〈Y1〉i for the α succession.

6 Discussion

How it can be see from results, 〈Y1〉i is strongly
influenced by the parameter α. For example
for α = 50 at the end of the blender the gas
has a quasi-uniform composition.

7 Conclusions

This study has demonstrated that the disper-
sion can be very important in the flux of a
fluid in a permeable media. Furthermore it
can suggest a method to verify experimentally
the influence of dispersion and to determine α.



8 Figures

Figure 1: geometry

Figure 2: mesh

Figure 3: 〈Y1〉i at y = 0

Figure 4: 〈Y1〉i at y = 2.5

Figure 5: 〈Y1〉i for α = 00

Figure 6: 〈Y1〉i for α = 05

Figure 7: 〈Y1〉i for α = 10



Figure 8: 〈Y1〉i for α = 15

Figure 9: 〈Y1〉i for α = 20

Figure 10: 〈Y1〉i for α = 25

Figure 11: 〈Y1〉i for α = 30

Figure 12: 〈Y1〉i for α = 35

Figure 13: 〈Y1〉i for α = 40

Figure 14: 〈Y1〉i for α = 45

Figure 15: 〈Y1〉i for α = 50
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