Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modeling Thermal Stresses of Copper Interconnects in 3D IC Structures

Bentz, D.N., Zhang, J., Bloomfield, M., Lu, J-Q., Gutmann, R.J., Cale, T.S.
Rensselaer Polytechnic Institute

One of the key issues in developing higher density microelectronics devices is the impact of the stresses induced by thermal expansion mismatches of the materials used. We have examined, using FEMLAB, the stresses due to interwafer copper interconnects embedded in multilayer structures created by bonding two wafers using an organic low-k dielectric glue, benzocylcobutene (BCB). This work ...

Modeling the Thermo-mechanical Behavior of a “V”-shaped Composite Buckle-beam Thermal Actuator

Kushkiev I., Jupina, M.A.
Department of Electrical and Computer Engineering, Villanova University, Villanova, PA

In this paper, we validate a numerical model of a “V”-shaped buckle-beam electro-thermal actuator through FEMLAB simulation. The motivation here is similar to that of the simulation of purely electronic VLSI circuits: before manufacturing a prototype, one wishes to virtually build the device and predict its behavior. FEMLAB allowed us to study the effect of temperature dependant ...

Simulation of Faults by Means of Finite Element Analysis in a Switched Reluctance Motor

Briso-Montiano, J.R., Karrelmeyer, R., Dilger, E., Bosch, R.
Robert Bosch GmbH Stuttgart, Dept. CR/AEY

The influence of the presence of errors in the behavior of a switched reluctance motor is investigated in this paper. The dynamic response of a Switched Reluctance Motor (SRM) is analyzed by the coupled structural and electromagnetic Finite Element Method (FEM). The dynamic behavior of the motor under failure operation can lead us to non-invasive diagnosis of faults and rotor eccentricity in ...

On Teaching Chemical Engineering Fundamentals Using FEMLAB

William M. Clark,
Worcester Polytechnic Institute

We are investigating the feasibility of using FEMLAB as an integral part of the educational experience of chemical engineering students at Worcester Polytechnic Institute. Our current practices and immediate plans for using FEMLAB in teaching include homework and projects in a graduate course, simulations of unit operations laboratory experiments for use as pre-lab preparations for actual lab ...

FEM Characterization of Terahertz Wave on Metal Wire Waveguides

Deibel, J.A., Wang, K., Escarra, M.D., Mittleman, D.M.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

The terahertz (THz) region of the electromagnetic spectrum (100 GHz to 10 THz) remained relatively unexplored until developments in ultrafast laser technology provided techniques for the generation and detection of THz radiation. Recently, simple metal wires were found to be effective terahertz waveguides that exhibited very low loss and dispersion. The THz radiation propagates along the surface ...

A computational fluid dynamics model of a 20Kg induction stirred laboratory scaled ladle

Pal, M., Eriksson, R., Jönsson, P.
MSE, KTH-Stockholm

In this paper a computational fluid dynamics model of a 20 Kg laboratory scaled induction ladle is presented. This particular laboratory furnace can be equipped with an electromagnetic stirrer, which can be used to agitate the steel melt. The CFD model so developed will make it feasible to have information about the fluid flow in this particular laboratory furnace. The objective of this paper ...

Mathematical modeling of nanomaterials

Strauss, D.J., Trenado, C.
Institute of New Materials, Saarbrücken

Mathematical modeling at the Institute of New Materials has played a crucial role in supporting the manufacturing and design of new technologies of nanomaterials, whose applications range from transportation, electronics and optics engineering to environmental sciences. In this paper, we focus our attention to two mathematical models together with their corresponding FEMLAB simulations: The ...

Simulation of roll coating process using FEMLAB

Manski, S.S.1, Mmbaga, J.P.1, Hayes, R.E.1, Bertrand, F.H.2, Tanguy, P.A.2
1 Department of Chemical and Materials Engineering, University of Alberta, Edmonton AB Canada
2 URPEI, Department of Chemical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada

Paper coating operations involve a number of coupled multiphase interactions. The use of FEMLAB to study these coupled phenomena using a level set method is reported. Several problems, including the penetration of fluid into a porous media, flow split meniscus dynamics and entrapment of air bubbles during coating process are explored using a level set implementation. Fluid penetration from a ...

Confinement Loss Computations in Photonic Crystal Fibres using a Novel Perfectly Matched Layer Design

Viale, P., Février, S., Gérôme, F., Vilard, H.
IRCOM, CNRS UMR 6615, Limoges, France

To modelize infinite photonic crystal fibre (PCF) with 2D-finite-geometry mode solver, it is necessary to use a perfectly matched layer (PML). We have performed a new type of PML design to simulate propagation in PCFs. The results obtained with index-guiding PCFs are in very good agreement with previous theoretical published results. Our PML is quickly optimized. The link between MATLAB and ...

Numerical Calculations of Pulsed Laser Heating of Non-isotropic Materials

Gamborg Andersen, G., Petrunin, V.V., Baurichter, A.
University of Southern Denmark, Physics Department, Odense, Denmark

We used FEMLAB (Finite Element Modelling LABoratory) for modelling heat propagation in 4 dimensions (time and the 3 spatial dimensions) after pulsed laser heating of non-isotropic materials during surface science experiments. As an example, the spatial and temporal evolution of a laser induced temperature jump in highly oriented pyrolytically grown graphite (HOPG) was calculated on a ns time ...

Quick Search