Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Temperature and Acceleration Sensitivities of a Dual Cavity Fabry-Perot Interferometer - new

[1]R. K. Banyal
Indian Institute of Astrophysics, Bengaluru, Karnataka, India[1]

The numerical study of temperature and acceleration sensitivities of a dual cavity Fabry-Perot (FP) interferometer is carried out using finite element method. The optical cavities are formed by machining two side-by-side circular bore of 12 mm each on a monolithic block of low expansion material. One cavity will be used to generate broadband channel spectra for accurate wavelength calibration of ...

COMSOL Multiphysics in Modeling MOCVDs

Y. Shimogaki
Shimogaki Laboratory
Department of Materials Engineering,
The University of Tokyo

This paper showed that: * SAG-MOCVD is a powerful tool to fabricate OEICs and is also effective to extract true surface kinetics during MOCVD. * GaAs-MOCVD process was examined by SAG analysis where it was seen that below 600ºC, surface kinetics shows non-linear behavior. * Surface reaction rate constant of adsorbed species was constant against offset angle, while adsorption equilibrium ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh to accommodate the moving boundary. The electromagnetics model consist of four multiphysics models, two ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the ...

An All-Purpose Full-Vectorial Finite Element Model for Arbitrarily Shaped Crossed-Gratings

G. Demésy[1], F. Zolla[1], A. Nicolet[1], and M. Commandré[1]
[1]Institut Fresnel, Université Aix-Marseille III, École Centrale de Marseille, France

We demonstrate the accuracy of the Finite Element Method (FEM) to characterize an arbitrarily shaped crossed-grating in a multilayered stack illuminated by an arbitrarily polarized plane wave under oblique incidence. To our knowledge, this is the first time that 3D diffraction efficiencies are calculated using the FEM. The method has been validated using classical cases found in the literature. ...

Reconstruction for Interstitial Diffuse Optical Tomography (iDOT) for Human Prostate

X. Liang, K. Kang-Hsin Wang, and T. Zhu
University of Pennsylvania
Philadelphia, PA

Determination of tissue optical properties distributions is very important for determining light fluence distribution during photodynamic therapy (PDT). In this study, an interstitial diffuse optical tomography (iDOT) system was used to characterize the spatial distribution of optical properties for a series of mathematical phantoms as well as verification measurements in a prostate ...

Quick Search

141 - 149 of 149 First | < Previous | Next > | Last