Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Consultez les proceedings de la Conference COMSOL 2020

Punch Design for Uniaxial Forging Process of γ-TiAl Using COMSOL Multiphysics®

R. Cagliero[1] and G. Maizza[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The increasing demand for improved metallurgical products strongly motivates the optimization of manufacturing processes and design of γ-TiAl products. Among the large variety of available forming processes, cold closed-die forging is particularly suitable for producing net shape ... En savoir plus

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical ... En savoir plus

Large Scale Outdoor Flammable & Toxic Gas Dispersion Modelling in Industrial Environments

A. Hallgarth[1], A. Zayer[1], A. Gatward[2], and J. Davies[2]

[1]Hazard Research & Risk Consultants Ltd, Aberystwyth, Wales, United Kingdom
[2]Independent Consultants, United Kingdom

HazRes has developed a gas discharge and dispersion model in COMSOL which takes into account the effects of localized wind profiles and turbulence generated by buildings, structures and terrain on the dispersion of gases in question. The main focus of this work is to develop and provide ... En savoir plus

Fluid Flow Simulation of Preconcentration Membranes Using Finite Elements Tools

R. Inglés[1], J. Pallares[2], J.L. Ramirez[1], and E. Llobet[1]

[1]Dept. of Electronic, Electrical and Automatic Control Engineering, Universitat Rovira i Virgili, Tarragona, Spain
[2]Department of Mechanical Engineering School of Chemical
Engineering Universitat Rovira i Virgili, Tarragona, Spain

We use finite elements simulations in order to study the fluid flow behavior in a chamber of a preconcentrator. We realized that most part of the fluid does not affect our preconcentrator because it is going out the chamber at high distance above it and parallel to the preconcentrator. ... En savoir plus

Modeling of Silicon Transport into Germanium Using a Simplified Crystal Growth Technique

F. Mechighel[1][3], B. Pateyron[1], M. El Ganaoui[1], S. Dost[2], and M. Kadja[3]

[1]Laboratory SPCTS UMR CNRS, ENSCI, Limoges University, Limoges, France
[2]Crystal Growth Laboratory, Department of Mechanical Engineering, University of Victoria, British Columbia, Victoria, Canada
[3]Department of Mechanical Engineering, University of Constantine, Constantine, Algeria

A numerical simulation study, using COMSOL Multiphysics®, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material ... En savoir plus

Thermo-fluid Dynamics Modelling of Hydrogen Absorption and Desorption in a LaNi4.8Al0.2 Hydride Bed

D. Baldissin[1] and D. Lombardo[1]
[1]Compumat S.r.l., Torino, Italy

A two-dimensional mathematical model for the absorption and desorption of H2 in LaNi4.8Al0.2 was developed and experimentally validated. The model is composed of an energy balance, a mass balance and a momentum balance. These differential equations are numerically solved by means of the ... En savoir plus

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a ... En savoir plus

3D-Simulation of Action Potential Propagation in a Squid Giant Axon

R. Appali[1], S. Petersen[1], J. Gimsa[2], and U. Rienen[1]
[1] Institute of General Electrical Engineering, Chair of Electromagnetic Field Theory, University of Rostock, Germany
[2] Institute of Biology, Chair of Biophysics, University of Rostock, Germany

Study of neurons plays a key role in the fields of basic and medical research aiming at the development of electrically active implants. The Fitzhugh-Nagumo equations are used to model and simulate the spike generation and propagation in a squid giant axon using COMSOL Multiphysics® 3.5a ... En savoir plus

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion ... En savoir plus

Analysis of an Electromagnet for Diverse Safety Rod Drive Mechanism

N. Subbulu[1], P. Sharma[1], V. Sharma[1], S.K. Das[1], R. Veerasamy[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

Prototype Fast Breeder Reactor (PFBR) has two independent, diverse, fast acting & fail safe shut down systems to achieve the required level of safety & reliability (1). The shut down systems comprises of nine numbers of Control & Safety Rod Drive Mechanisms (CSRDM) & ... En savoir plus