La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

The Brüel & Kjær 4134 Condenser Microphone

This is a model of the Brüel and Kjær 4134 condenser microphone. The geometry and material parameters are those of the actual microphone. The modeled sensitivity level is compared to measurements performed on an actual microphone and shows good agreement. The membrane deformation, pressure, velocity, and electric field are also determined. The model is a true multiphysics problem that ...

Acoustic Reflections off a Water-Sediment Interface

This model determines the reflection coefficient of plane acoustic waves, at different frequencies and at different angles of incidence, off a water-sediment interface. The ability of the Poroelasitc Waves interface to model the coupled acoustic and elastic wave in any porous substance (Biot's theory) is used to describe the water-sediment system. The model results are in good agreement with ...

Generic 711 Coupler—An Occluded Ear-Canal Simulator

This is the model of an occluded ear canal simulator (a generic 711 coupler). Besides certain details the geometry corresponds to the Brüel & Kjær Ear Simulator Type 4157. The real life couplers are used for simulating the acoustics of a standardized human ear canal and can be used for measurements on all sorts of devices. They are widely used in the hearing aid industry but also as ear ...

Spherical Piezoacoustic Transducer

This tutorial provides a step-by-step instruction to setup a fully-coupled 3D structural-acoustic interaction problem. Interaction between a vibrating spherical piezoelectric structure with the surrounding fluid media is considered. The piezoelectric material PZT-5H from the materials library is used. Instructions on how to create a radially polarized piezoelectric material in spherical ...

Helmholtz Resonator Analyzed with Different Frequency Domain Solvers

This model simulates a simple three-dimensional axisymmetric Helmholtz resonator, a classic acoustics model of a resonating circuit with a known theoretical solution. The idealized version considered here consists of a tube and a closed volume in series which are exposed to a pulsatile pressure. Real-world phenomena explained by the resonator include amongst others the resonance from blowing ...

Lumped Loudspeaker Driver

This is a model of a moving-coil loudspeaker where a lumped parameter analogy represents the behavior of the electrical and mechanical speaker components. The Thiele-Small parameters (small-signal parameters) serve as input to the lumped model, which is represented by an Electric Circuit physics. The lumped model is coupled to a 2D axisymmetric Pressure Acoustics model describing the ...

Photoacoustic Resonator

This is a model of a simple photoacoustic (or optoacoustic) resonator. A pulsating laser heats a gas causing expansion and contraction and thus creates pressure waves. Such devices are used as sensors for measuring material parameters of the gas inside the resonator. The resonance frequency of the system depends on the gas in the resonator. The model uses the thermoacoustic interface with a ...

Acoustic-Structure Interaction and Air Flow in Violins

These models are featured in the blog post [Analyze Violin Tone and Volume with Multiphysics Modeling](http://www.comsol.com/blogs/analyze-violin-tone-and-volume-with-multiphysics-modeling/). One applies acoustic-structure interaction to study how the air mode resonance is affected by the coupled vibrations in the violin body. The other uses a potential flow approximation to find out how the air ...

Baffled Membrane

Learn how to use the Acoustic-Shell Interaction interface in this tutorial example of a thin vibrating membrane set in an infinite baffle. This example demonstrates how to model the acoustic interaction between a vibrating membrane and the surrounding air. In order to focus on the principles, the geometry is kept simple and the driving mechanism is not modeled.

Acoustic Reflection Analyzer for a Water-Sediment Interface

Analyzing acoustic reflections at surfaces of various structures is important for many engineering disciplines. The Acoustic Reflection Analyzer for a Water-Sediment Interface app shows one such system where the analysis has relevance for underwater acoustics and sonar applications. The app analyzes the reflection and absorption coefficients of plane acoustic waves, scattering off of a water ...