Quick Search

La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Open Pipe

In this model, sound created by a vibrating piston radiates through a baffled pipe. The impedance is measured and then used in an impedance boundary condition that replaces the surrounding air domain. This technique can be employed to reduce solution time and memory usage for large models with pipe openings.

Generic 711 Coupler𠅊n Occluded Ear-Canal Simulator

This is the model of an occluded ear canal simulator (a generic 711 coupler). Besides certain details the geometry corresponds to the Brüel & Kjær Ear Simulator Type 4157. The real life couplers are used for simulating the acoustics of a standardized human ear canal and can be used for measurements on all sorts of devices. They are widely used in the hearing aid industry but also as ear ...

Lumped Loudspeaker Driver

This is a model of a moving-coil loudspeaker where a lumped parameter analogy represents the behavior of the electrical and mechanical speaker components. The Thiele-Small parameters (small-signal parameters) serve as input to the lumped model, which is represented by an Electric Circuit physics. The lumped model is coupled to a 2D axisymmetric Pressure Acoustics model describing the surrounding ...

Vibrating Micromirror with Viscous and Thermal Damping

Micromirrors are used in certain MEMS devices to control optic elements. This model of a vibrating micromirror surrounded by air uses the Thermoacoustic-Shell Interaction user interface to model the fluid-solid interaction, and it thus includes the correct viscous and thermal damping of the mirror from the surrounding air. The resonance frequency of the mirror when under a torquing load is ...

Acoustic Cloaking

Two articles in the New Journal of Physics describe how to derive necessary conditions on an anisotropic density tensor to create a perfect acoustic cloak in 2D, and show how this material can be realized in practice as a layered shell with isotropic properties in each layer. These two example files illustrate simplest possible implementations using both anisotropic density and the layered ...

Acoustic Muffler with Thermoacoustic Impedance Lumping

This model utilizes the thermoacoustic interface in a submodel to obtain a detailed (and more precise) measure for the transfer impedance of a perforated plate. The impedance is in turn used as an internal impedance in a pressure acoustic model of a muffler. Results are compared to classic impedance models.

Test Bench Car Interior

Sound is generated by a point source located in the wall of this test bench car interior. The sound pressure level response at a point of measurement is investigated for a range of frequencies and four different mesh resolutions. The model is first solved with the default direct solvers. Finally, it is shown how to set up an iterative solver which is efficient for large problems and the finest ...

Axisymmetric Condenser Microphone with Electrical Lumping

This model is that of a simple axisymmetric condenser microphone. The model includes all the relevant physics and determines the sensitivity of the specific microphone geometry and material parameters. The model uses a lumped approximation for the electric small signal problem but solves a full FE model for the acoustic-mechanical system. The quiescent (zero point) problem is solved fully using ...

Photoacoustic Resonator

This is a model of a simple photoacoustic (or optoacoustic) resonator. A pulsating laser heats a gas causing expansion and contraction and thus creates pressure waves. Such devices are used as sensors for measuring material parameters of the gas inside the resonator. The resonance frequency of the system depends on the gas in the resonator. The model uses the thermoacoustic interface with a ...

Baffled Membrane

Learn how to use the Acoustic-Shell Interaction interface in this tutorial example of a thin vibrating membrane set in an infinite baffle. This example demonstrates how to model the acoustic interaction between a vibrating membrane and the surrounding air. In order to focus on the principles, the geometry is kept simple and the driving mechanism is not modeled.