Application Gallery

La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Disk-Stack Heat Sink

This problem follows a typical preliminary board-level thermal analysis. First perform a simulation of the board with some Integrated Circuits (ICs). Then, add a disk-stack heat sink to observe cooling effects. Finally, explore adding a copper layer to the bottom of the board in order to even out the temperature distribution. This exercise highlights a number of useful modeling techniques such ...

Temperature Field in a Cooling Flange

A cooling flange in a chemical process is used to cool the process fluid, which flows through the flange. The surrounding air cools the flange via natural convection. In the stationary model, the forced convection to the process fluid is modeled using a constant heat transfer coefficient. The natural convection cooling is modeled using tabulated empirical transfer coefficients that are ...

Composite Thermal Barrier

This example shows how to set up multiple sandwiched thin layers with different thermal conductivities in two different ways. First, the composite is modeled as a 3D object. In the second approach the Thin thermally resistive layer boundary condition is used to avoid resolving the thin domains. The technique is useful when modeling heat transfer through thermal barriers like multilayer coatings.

Non-Isothermal Flow Around a Cooling Device

This model shows the application of COMSOL Multiphysics in the modeling of non-isothermal laminar flow of fluids (in this case a gas). The model assumes that the expansion work done by the gas is negligible, that the variations in temperature are obtained through external heating, and that the fluid is an ideal gas. The model treats the steady flow of a gas over a fin, which is heated by an ...

Radiative Heat Transfer in a Utility Boiler

This model uses the discrete-ordinates method (DOM) to analyze the radiative heat transfer in a utility boiler with internal obstacles. DOM is one of the most useful radiation models for prediction of radiative heat fluxes on the furnace walls of a combustion chamber. With this model, the behavior of the temperature and heat flux within the furnace and on the heat surfaces can be easily obtained ...

Evaporation in Porous Media with Small Evaporation Rate

Evaporation in porous media is an important process in food and paper industry among others. Many physical effects must be considered: fluid flow, heat transfer in porous media and transport of moisture. This tutorial describes how dry air flowing through a humid porous medium can partially dry it. It is assumed that the initial amount of liquid water in the porous medium is large enough and that ...

Radiative Heat Transfer in Finite Cylindrical Media—P1 Method

This model uses the Discrete-Ordinates method (DOM) to solve a 3D radiative transfer problem in an emitting, absorbing, and linear-anisotropic scattering finite cylindrical medium. Using the S6 quadrature of DOM leads to faster and more accurate results, which are needed in combined modes of heat transfer. The calculated incident radiation and heat fluxes agree well with published results ...

Optimizing a Thermal Process

A thermal processing scenario is modeled whereby two heaters raise the temperature of a gas flowing through a channel. The Optimization Module is used to find the heater power to maximize the outflow temperature, while maintaining a constraint on the peak temperature at the heaters themselves.

Thermoelectric Leg

A thermoelectric leg is a fundamental component of a thermoelectric cooler (or heater). For example, a thermocouple is a thermoelectric module typically made of two thermoelectric legs: one made of p-type and of one n-type semiconductor material which are connected in series electrically and in parallel thermally.

Parameterized Window Geometry

During the design of a building, environmental issues have gained considerable influence in the entire project. One of the first concerns is to improve thermal performances. In this process, simulation software are key tools to model thermal losses and performances in the building. The international standard ISO 10077-2:2012 deals with thermal performance of windows, doors and shutters. It ...

Quick Search