La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Hyperelastic Seal

In this model you study the force-deflection relation of a car door seal made from a soft rubber material. The model uses a hyperelastic material model together with formulations that can account for the large deformations and contact conditions.

Elastoplastic Analysis of Holed Plate

In this example you analyze a perforated plate loaded into the plastic regime. In addition to the original problem, which you can find in section 7.10 of The Finite Element Method by O.C. Zienkiewicz, you can also study the unloading of the plate. The example also shows you how to apply an external hardening function based on an interpolated stress-strain curve.

Necking of an Elastoplastic Metal Bar

A circular metal bar of elasto-plastic material with nonlinear isotropic hardening behavior is subjected to uniaxial tension. Affected by significant stresses the bar experiences high plasticity. The phenomenon of necking is captured and its growth is accurately simulated. The change in radius is in good agreement with results found other literature. This example is a classical benchmark for ...

Compression of an Elastoplastic Pipe

In offshore applications, it is sometimes necessary to quickly seal a pipe as part of the prevention of a blowout. This example shows a simulation, in which a circular pipe is squeezed between two flat stiff indenters. The model serves as an example of an analysis with very large plastic strains and contact.

Polynomial Hyperelastic Model

This model shows how you can implement a user defined hyperelastic material, using the strain density energy function. The model used is a general Mooney-Rivlin hyperelastic material model defined by a polynomial. In this example, you will see two material models based on the defined expression: a two-term equation and a five-term equation. The two-term Mooney-Rivlin material model ...

Sheet Metal Forming with Orthotropic Plasticity Hill '48

Metal Forming is the metalworking process of reshaping metal parts through mechanical deformation without adding or removing material. This is mainly based on plastic deformation that enables permanent deformation of the bodies. Here, a numerical simulation of the sheet metal forming process was carried out using an orthotropic material law for metal plasticity (Hill '48). Different forming ...

Viscoplastic Creep in Solder Joints

This example studies viscoplastic creep in solder joints under thermal loading using the Anand viscoplasticity model, which is suitable for large, isotropic, viscoplastic deformations in combination with small elastic deformations. The geometry includes two electronic components (chips) mounted on a circuit board by means of several solder ball joints. Significant plastic flow appears after ...

Elastoacoustic Effect in Rail Steel

The elastoacoustic effect is a change in the speed of elastic waves that propagate in a structure undergoing static elastic deformations. The effect is used in many ultrasonic techniques for nondestructive testing of prestressed states within structures. This example studies the elastoacoustic effect in steels typically used in railroad rails. The analysis is based on the Murnaghan hyperelastic ...

Combining Elastoplastic and Creep Material Models

This model shows how to combine different types of material nonlinearity, such as creep and elastoplasticity. In this specific example you will perform a stress and nonlinear strain analysis on a thick cylinder under a nonproportional loading: an initial temperature increase followed by a fluctuating pressure applied to the internal surface of the cylinder. This load case involves two ...

Inflation of a Spherical Rubber Balloon - Membrane Version

The purpose of this model is to illustrate how the Membrane interface can be used to model thin hyperelastic structures. The example is identical to the Model Library model 'Inflation of a spherical rubber balloon', except that the Membrane interface is used instead of the Solid Mechanics interface.

11 - 20 of 20 First | < Previous | Next > | Last