La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Optical Scattering Off of a Gold Nanosphere

This model demonstrates the simulation of the scattering of a plane wave of light by a gold nanosphere. The scattering is computed for the optical frequency range over which gold can be modeled as a material with negative complex-valued permittivity. The far-field pattern and losses are computed.

Dielectric Slab Waveguide

A planar dielectric slab waveguide demonstrates the principles behind any kind of dielectric waveguide such as a ridge waveguide or a step-index fiber. This model solves for the effective index and fields of a dielectric slab waveguide and compares the solution to analytic results.

Scatterer on a Substrate

A plane TE-polarized electromagnetic wave is incident on a gold nanoparticle on a dielectric substrate. The absorption and scattering cross-sections of the particle are computed for a few different polar and azimuthal angles of incidence. The model first computes a background field from the plane wave incident on the substrate, and then uses that to arrive at the total field with the ...

Bandgap Analysis of a Photonic Crystal

This model investigates the wave propagation in a photonic crystal that consists of GaAs pillars placed equidistant from each other. The distance between the pillars determines a relationship between the wave number and the frequency of the light, which prevents light of certain wavelengths propagating inside the crystal structure. This frequency range is called the photonic bandgap. There are ...

Photonic Crystal

Photonic crystal devices are periodic structures of alternating layers of materials with different refractive indices. Waveguides that are confined inside of a photonic crystal can have very sharp low-loss bends, which may enable an increase in integration density of several orders of magnitude. This is a study of a photonic crystal waveguide. The crystal features a grid of GaAs pillars. ...

Optical Ring Resonator Notch Filter

In its simplest form, an optical ring resonator consists of a straight waveguide and a ring waveguide. The waveguides are placed close to each other, making the light affect each between the two structures. If the propagation length around the ring is an integral number of wavelengths, the field becomes resonant and a strong field builds up in the ring. After propagation around the ring ...

Mach-Zehnder Modulator

A Mach-Zehnder modulator is used for controlling the amplitude of an optical wave. The input waveguide is split up into two waveguide interferometer arms. If a voltage is applied across one of the arms, a phase shift is induced for the wave passing through that arm. When the two arms are recombined, the phase difference between the two waves is converted to an amplitude modulation. This is a ...

Fiber Simulator

The transmission speed of optical waveguides is superior to microwave waveguides because optical devices have a much higher operating frequency than microwaves, enabling a far higher bandwidth. Single-mode step-index fibers are used for long-haul (even transoceanic) communication, whereas both graded-index and step-index multimode fibers are used for short-distance communication, for example, ...

Plasmonic Wire Grating (Wave Optics)

Surface plasmon-based circuits are being used in applications such as plasmonic chips, light generation, and nanolithography. The Plasmonic Wire Grating Analyzer application computes the coefficients of refraction, specular reflection, and first-order diffraction as functions of the angle of incidence for a plasmonic wire grating on a dielectric substrate. The model describes a unit cell of the ...


A Gaussian electromagnetic wave is incident on a dense array of very thin wires (or rods). The distance between the rods and, thus, the rod diameter is much smaller than the wavelength. Under these circumstances, the rod array does not function as a diffraction grating (see the Plasmonic Wire Grating model). Instead, the rod array behaves as if it was a continuous metal sheet for light polarized ...

1–10 of 31