How to Create a Simulation App: Horn Antenna Demo

Jiyoun Munn | May 4, 2015

What if you could enable non-experts to run your multiphysics simulations on their own? You would save time, for sure, and they would get easy access to your expertise. Turning your simulations into apps with customized and easy-to-use interfaces is now a reality. Here, I will explain why you should start creating apps and how to go about it. We’ll use the new Corrugated Circular Horn Antenna Simulator demo app to guide us.

Andrea Ferrario | April 30, 2015

Electrical machines are an important pillar in modern industrial society. Among the different types of electrical machines, rotating machines such as generators and motors take up a central role. The Rotating Machinery, Magnetic physics interface in COMSOL Multiphysics is designed specifically for modeling these systems. Follow along as we explore how to model rotating machinery and detail best practices for working with this feature.


Lexi Carver | April 28, 2015

When simulating acoustic waves, vibrating mechanical hardware, or fluid in a channel — just to name a few applications — you may be interested in visualizing the movement or shape change in a device. Postprocessing and visualization can help enhance your understanding of simulation results, and using plots to illustrate physical motion allows you to put everything into perspective. Deformations are a great way to accomplish this.

Ajay S S | April 23, 2015

Last month, researchers and developers gathered in Chennai, India for the 7th annual Conference on Automotive R&D Trends. Emphasizing the importance of research and development in India’s automotive industry, this year’s theme was “Towards Strengthening Indian Automotive R&D”. At the conference, our Managing Director Vineet Dravid presented a new approach to product development. He was joined by David Neihguk of Mahindra & Mahindra, who discussed the role of COMSOL Multiphysics in optimizing their muffler design.


René Christensen | April 21, 2015

Today we welcome guest blogger René Christensen from Dynaudio A/S. When evaluating loudspeaker performance, dips and/or peaks in the on-axis sound pressure level can be a result of an unfortunate distribution of phase components. To overcome this, we use a phase decomposition technique that splits a total surface vibration into three components depending on how they contribute to the sound pressure in an arbitrary observation point; either adding to, subtracting from, or not contributing to the pressure.

Chien Liu | April 16, 2015

Previously in our weak form series, we discretized the weak form equation to obtain a matrix equation to solve for the unknown coefficients in our simple example problem. Following the same procedure as in this previous blog post, we will implement the equation in the COMSOL Multiphysics® software with additional steps included to examine the matrices. We will find it more convenient to use a COMSOL® software application to display all relevant matrices at once, arranged logically on one screen.

Brianne Costa | April 29, 2015

As communication systems in aviation become more complex, multiple antennas are often placed on the same airplane. This creates crosstalk, or cosite interference, which occurs between the antennas and can disturb the operation of the aircraft. In this tutorial model, new with COMSOL Multiphysics version 5.1, we simulate the interference between two identical antennas — one transmitting and one receiving — on an airplane’s fuselage to analyze the crosstalk effect.


Bridget Cunningham | April 27, 2015

Over the years, the development of sensor technology has enabled more accurate measurements of fluid flow. One such device is the thermal flow sensor. This instrument is valued for its simple design and implementation as well as its high degree of accuracy. Using COMSOL Multiphysics, a team of researchers from the University of Cambridge designed a 3D model to analyze the dynamics of a thermal flow sensor, a component of a flow meter.


Edmund Dickinson | April 22, 2015

You might think you’re a smooth driver — but your engine probably doesn’t. Everyday obstructions like traffic lights and changing speed limits mean that the power demands of a car drivetrain vary rapidly. Since we expect new technologies like hybrid or electric vehicles to match the performance of existing cars in responding instantly to the demands of our right foot, designers need to make sure that this is possible and safe. One part of this involves modeling batteries.

Fanny Littmarck | April 20, 2015

COMSOL Multiphysics version 5.1 introduces a new tutorial model of a UHF RFID tag. RFID tags allow you to identify and monitor both inanimate objects and living creatures through the use of electromagnetic fields. The UHF RFID tag has a wider range than other types of RFID tags and is often used to identify animals. We can evaluate the performance of the tag through an analysis of the electric field and far-field radiation pattern.


Fanny Littmarck | April 15, 2015

Today marks the release of COMSOL Multiphysics version 5.1. The latest COMSOL software version brings you 20 demo apps and many new features and functionality updates to numerous products. Here’s what you can expect after downloading version 5.1.


1 18 19 20 21 22 100