How to Model Roller Bearings in COMSOL Multiphysics®

Prashant Srivastava February 14, 2018

Bearings, specifically rolling element bearings, are some of the most commonly used industrial components. These bearings are found in gearboxes, conveyors, motors, and rolling mills due to the low friction and low starting torque compared to hydrodynamic bearings. They can also handle changes in speed, temperature, and loads. In this blog post, we will look at different bearing types and demonstrate how to model a rotor system supported on roller bearings using the COMSOL Multiphysics® software.

Read More

Caty Fairclough February 13, 2018

To treat atherosclerosis, a cardiovascular disease in which a buildup of plaque causes an artery to narrow, doctors can insert a tiny wire mesh tube called a stent into the obstructed artery. Expanding the stent opens up the artery and helps restore blood flow. To successfully perform this operation and minimize potential health hazards, stent designs must be thoroughly studied and optimized. To do so, we can perform a nonlinear structural mechanics analysis with the COMSOL Multiphysics® software.

Read More

Nathan Martin February 8, 2018

In a 2013 report, the Intergovernmental Panel on Climate Change stated that Earth’s cryosphere is “a natural integrator of climate variability and provides some of the most visible signatures of climate change.” (Ref. 1) The cryosphere is the part of the climate system that contains frozen water and makes up 80% of our fresh water. Using the COMSOL Multiphysics® software, we can simulate classical ice flow to analyze cryosphere dynamics and assess climate change effects such as rising sea levels.

Read More

Categories

Bridget Paulus February 7, 2018

Natural convection is a type of heat transport found in engineering applications of all sizes. For instance, this phenomenon helps maintain a reasonable temperature in both small electronic devices and large buildings. No matter the application area, design engineers can use the COMSOL Multiphysics® software to model natural convection in air for both 2D and 3D geometries.

Read More

Caty Fairclough February 6, 2018

Robert Maillart was a civil engineer who balanced his artistic and technical abilities to create world-renowned structures, such as the Salginatobel Bridge. Maillart’s innovative work revolutionized the use of reinforced concrete and influenced future generations of architects and engineers.

Read More

Categories

Caty Fairclough January 31, 2018

Due to their flexible fuel choice options, immovable parts, and potential for efficient power generation, thermophotovoltaic (TPV) systems have a wide variety of possible applications. For instance, these systems could help provide portable energy, advance space travel, and power automobiles. However, engineers must first improve the efficiency of TPV systems as well as reduce system costs and device temperatures. To accomplish these goals, engineers can use simulation to analyze and optimize their TPV designs.

Read More

Caty Fairclough January 29, 2018

Micromirrors have two key benefits: low power consumption and low manufacturing costs. For this reason, many industries use micromirrors for a wide range of MEMS applications. To save time and money when designing micromirrors, engineers can accurately account for thermal and viscous damping and analyze device performance via the COMSOL Multiphysics® software.

Read More

Edmund Dickinson January 26, 2018

Previously on the blog, we discussed why surfaces are sites of special chemical interest and discussed the theories used to describe reactions at surfaces, including when those surfaces are described within homogenized models of porous media. In this blog post, we’ll discuss how chemicals behave when they become attached to a surface by adsorption. Adsorption plays an essential role in many catalytic and sensing processes, so let’s consider how it can be built into your chemical models.

Read More

Claire Bost January 24, 2018

Computing laminar and turbulent moisture flows in air is both flexible and user friendly with the Moisture Flow multiphysics interfaces and coupling in the COMSOL Multiphysics® software. Available as of version 5.3a, this comprehensive set of functionality can be used to model coupled heat and moisture transport in air and building materials. Let’s learn how the Moisture Flow interface complements existing functionality, while highlighting its benefits.

Read More

Cesare Tozzo January 23, 2018

Ferromagnetic materials are ubiquitous in electronic components and electrical machinery. In EM modeling, we may be interested in the broader application or focus on a certain material characteristic (e.g., the mechanical resistance of structural steel) that happens to be magnetic. In both cases, ferromagnetic parts influence the magnetic field in their surroundings, and identifying exactly how this happens could be crucial to the proper functioning of a device or system.

Read More

Categories

Henrik Sönnerlind January 22, 2018

All structural engineers use Saint-Venant’s principle, whether actively or subconsciously. You can find various formulations of this principle in most structural mechanics textbooks, but its exact meaning is not obvious. Saint-Venant’s principle tells us that the exact distribution of a load is not important far away from the loaded region, as long as the resultants of the load are correct. In this blog post, we will explore Saint-Venant’s principle, particularly in the context of finite element (FE) analysis.

Read More


Categories


Tags

1 4 5 6 7 8 120