Simulating Natural Convection in Air with COMSOL Multiphysics®

Bridget Paulus February 7, 2018

Natural convection is a type of heat transport found in engineering applications of all sizes. For instance, this phenomenon helps maintain a reasonable temperature in both small electronic devices and large buildings. No matter the application area, design engineers can use the COMSOL Multiphysics® software to model natural convection in air for both 2D and 3D geometries.

Read More

Caty Fairclough February 6, 2018

Robert Maillart was a civil engineer who balanced his artistic and technical abilities to create world-renowned structures, such as the Salginatobel Bridge. Maillart’s innovative work revolutionized the use of reinforced concrete and influenced future generations of architects and engineers.

Read More

Categories

Caty Fairclough January 31, 2018

Due to their flexible fuel choice options, immovable parts, and potential for efficient power generation, thermophotovoltaic (TPV) systems have a wide variety of possible applications. For instance, these systems could help provide portable energy, advance space travel, and power automobiles. However, engineers must first improve the efficiency of TPV systems as well as reduce system costs and device temperatures. To accomplish these goals, engineers can use simulation to analyze and optimize their TPV designs.

Read More

Caty Fairclough January 29, 2018

Micromirrors have two key benefits: low power consumption and low manufacturing costs. For this reason, many industries use micromirrors for a wide range of MEMS applications. To save time and money when designing micromirrors, engineers can accurately account for thermal and viscous damping and analyze device performance via the COMSOL Multiphysics® software.

Read More

Edmund Dickinson January 26, 2018

Previously on the blog, we discussed why surfaces are sites of special chemical interest and discussed the theories used to describe reactions at surfaces, including when those surfaces are described within homogenized models of porous media. In this blog post, we’ll discuss how chemicals behave when they become attached to a surface by adsorption. Adsorption plays an essential role in many catalytic and sensing processes, so let’s consider how it can be built into your chemical models.

Read More

Claire Bost January 24, 2018

Computing laminar and turbulent moisture flows in air is both flexible and user friendly with the Moisture Flow multiphysics interfaces and coupling in the COMSOL Multiphysics® software. Available as of version 5.3a, this comprehensive set of functionality can be used to model coupled heat and moisture transport in air and building materials. Let’s learn how the Moisture Flow interface complements existing functionality, while highlighting its benefits.

Read More

Cesare Tozzo January 23, 2018

Ferromagnetic materials are ubiquitous in electronic components and electrical machinery. In EM modeling, we may be interested in the broader application or focus on a certain material characteristic (e.g., the mechanical resistance of structural steel) that happens to be magnetic. In both cases, ferromagnetic parts influence the magnetic field in their surroundings, and identifying exactly how this happens could be crucial to the proper functioning of a device or system.

Read More

Categories

Henrik Sönnerlind January 22, 2018

All structural engineers use Saint-Venant’s principle, whether actively or subconsciously. You can find various formulations of this principle in most structural mechanics textbooks, but its exact meaning is not obvious. Saint-Venant’s principle tells us that the exact distribution of a load is not important far away from the loaded region, as long as the resultants of the load are correct. In this blog post, we will explore Saint-Venant’s principle, particularly in the context of finite element (FE) analysis.

Read More

Bridget Paulus January 19, 2018

In civil engineering and the biomedical field, strain gauges are used to measure deformation sustained by various objects. Typically, foil gauges are used, but they have low sensitivity. MEMS-based gauges, like the double-ended tuning fork (DETF) strain gauge, offer better performance. To optimize the design of a new DETF strain gauge, researchers used the COMSOL Multiphysics® software and compared the results to an analytical model.

Read More

Categories

Caty Fairclough January 18, 2018

While our daily lives are clearly affected by the “flashier” parts of the water cycle (rain, snow, etc.), other parts of the cycle — such as the groundwater moving beneath our feet — are just as important. We use groundwater for irrigation and drinking water, and it affects natural processes and habitats. When studying groundwater, it’s often important to understand the movement of various solutes through the water. To predict solute transport, scientists can use multiphysics simulation.

Read More

Categories

Edmund Dickinson January 17, 2018

As two of the greatest mathematicians to have ever lived, Leonhard Euler and Joseph-Louis Lagrange made numerous contributions to continuum mechanics. Combining their individual descriptions of the subject inspired the arbitrary Lagrangian-Eulerian (ALE) method, a technique that can be used for a multitude of simulation applications. Find out how the work of Euler and Lagrange helped create the ALE method and how it aids your simulations in the COMSOL Multiphysics® software.

Read More


Categories


Tags

1 7 8 9 10 11 119