Keynote Video: EPFL Uses Simulation to Design a Hyperloop Pod

Brianne Costa January 22, 2019

The EPFLoop team took the stage at the COMSOL Conference 2018 Lausanne with their hyperloop pod design, setting it down for the crowd to see. Learn about the different ways that the team of students and faculty from the École Polytechnique Fédérale de Lausanne, led by Mario Paolone and including Nicòlo Riva, Zsófia Sajó, and Dr. Lorenzo Benedetti, used multiphysics simulation to land in the top spot for hyperloop design at the 2018 SpaceX competition.

Lire la Suite

Prashant Srivastava January 9, 2019

Various machinery, such as engines, pumps, and turbines, employ components that transmit the load between the solid parts that are in relative motion. Common examples are piston rings, cams, gear teeth, and (of course) bearings. Often, these components are lubricated by maintaining an oil film between the two solid parts to minimize the friction and wear. In this blog post, we look at methods for modeling the fluid friction in lubricated joints.

Lire la Suite

Bridget Paulus August 21, 2018

If you’ve ever gone on a road trip, you know that it’s a bit of a pain — literally. Part of why your body aches after driving long distances is due to whole body vibration (WBV), which can cause fatigue; motion sickness; and, eventually, serious health problems. To design systems that reduce WBV for cars and other applications, engineers need an efficient way to visualize the effect of vibrations on the human body. That’s where simulation comes in.

Lire la Suite

Ravi Ranjan April 18, 2018

When working with multibody systems, you may need to model a mechanism that transfers motion from one component to another. The mechanism used to implement this behavior, known as a cam-follower mechanism, plays an important role in many applications, including internal combustion engines, printing control mechanisms, textile weaving machines, and valves. You can easily model this type of mechanism with the Cam-Follower feature in the COMSOL® software. Let’s take a look at this feature in detail.

Lire la Suite

Thomas Forrister February 20, 2018

When a car hits a pothole, the suspension system can take on major damage in a matter of seconds. Suspension systems must be able to adapt to myriad road conditions while supporting the wheels, seats, and body of the car. To study the performance of a vehicle suspension system, you can use multibody analyses and a simplified lumped model of a mechanical system.

Lire la Suite

Mats Danielsson October 11, 2017

The trebuchet is a large siege weapon that you might recognize from movies set in the Middle Ages or fantasy worlds. This weapon is built on the idea of converting potential energy into kinetic energy to hurl a projectile over a large distance. Simple as it seems, the trebuchet is a complicated dynamical system. In this blog post, we will build a simplified model of a counterweight trebuchet using the Multibody Dynamics Module and examine some of its design features.

Lire la Suite

Pawan Soami May 23, 2017

Gears are used in a variety of applications, such as clocks, industrial machinery, music boxes, bicycles, and automobiles. A gearbox is a major source of vibration and noise irrespective of how it is used. The most effective approach to reduce the noise radiation from a gearbox is to perform a vibroacoustic analysis to improve the design. Let’s see how the COMSOL Multiphysics® software can be used to help build quieter transmission systems.

Lire la Suite

Caty Fairclough May 11, 2017

In the 1800s, two scientists — Nikola Tesla and Galileo Ferraris — separately invented their own versions of AC induction motors. Such AC motors turned out to be reliable alternatives to the DC motors that were popular at the time. To accurately study induction motors, we must account for the multiple physics that occur. As today’s example illustrates, we can include the electromechanical effects using the COMSOL Multiphysics® software.

Lire la Suite

Caty Fairclough March 31, 2017

When designing multibody systems, interconnected flexible and rigid bodies must be analyzed to see how they are affected by large rotational and translational displacements. While we can achieve this with the Multibody Dynamics Module in the COMSOL Multiphysics® software, we first want to confirm the reliability of the simulation results. Here, we discuss a benchmark model of a four-bar mechanism that helps prove the validity of these multibody dynamics simulations.

Lire la Suite

Pawan Soami December 9, 2016

When performing a noise, vibration, and harshness (NVH) analysis of a transmission system, the elasticity of the gear mesh plays a crucial role in obtaining useful results. To help you create an accurate gear simulation, new features and functionality in the COMSOL Multiphysics® software enable you to evaluate gear mesh stiffness. Today, we’ll explain why it’s important to account for gear mesh elasticity as well as how to compute and include gear mesh stiffness in your multibody dynamics model.

Lire la Suite

Pawan Soami October 18, 2016

To accurately simulate a gear and obtain useful results, it is important to consider a number of elements behind the device’s design and how they are modeled. New features and functionality in the COMSOL Multiphysics® software provide you with the tools to address such properties and thus advance the reliability of your simulation studies. Today, we’ll review the various elements of gear modeling and explain how to account for them in our modeling processes.

Lire la Suite


Catégories


Tags

1 2 3