Hydrodynamic Thermal Transport in the Kinetic-Collective Model

Guest F. Xavier Alvarez February 28, 2019

Today, we invite guest blogger F. Xavier Alvarez of Universitat Autònoma de Barcelona (UAB) to discuss modeling heat transfer at the nanoscale using a novel theoretical framework and the COMSOL Multiphysics® software.

Lire la Suite

Chien Liu December 27, 2018

Carrier dynamics plays an important role in the transient behavior and frequency response of semiconductor devices. Here, we use two tutorial models of PIN rectifiers in the Semiconductor Module, an add-on to the COMSOL Multiphysics® software, to demonstrate the simulation of dynamical effects.

Lire la Suite

Chien Liu December 18, 2018

Traps are omnipresent in practical semiconductor devices. When modeling these devices, the Trap-Assisted Surface Recombination boundary condition adds the effects of charging and carrier capturing/releasing by surface or interface traps. Here, we examine a tutorial model of a metal-oxide-silicon capacitor (MOSCAP) to demonstrate how to use the feature in the Semiconductor Module, an add-on product to the COMSOL Multiphysics® software.

Lire la Suite

Chien Liu October 29, 2018

The effect of quantum tunneling can be important if the thickness of the energy barrier for the charge carrier is comparable to or smaller than the evanescent decay length. In order to account for this effect, we can use the WKB Tunneling Model feature, available in the Semiconductor Module as of version 5.4 of the COMSOL® software, for the heterojunction and Schottky contact boundary conditions. Here, we demonstrate their usage using a benchmark model.

Lire la Suite

Chien Liu October 18, 2018

The Schrödinger-Poisson Equation multiphysics interface simulates systems with quantum-confined charge carriers, such as quantum wells, wires, and dots. Here, we examine a benchmark model of a GaAs nanowire to demonstrate how to use this feature in the Semiconductor Module, an add-on product to the COMSOL Multiphysics® software.

Lire la Suite

Bridget Paulus September 10, 2018

Schottky diodes are one of the oldest semiconductor components, but they are still found in many modern applications, including computers and radar systems. To ensure that a Schottky diode performs well, it’s important for engineers to accurately analyze factors like current density and barrier height in the design. As a benchmark model demonstrates, the COMSOL Multiphysics® software and add-on Semiconductor Module are well suited for this type of analysis.

Lire la Suite

Caty Fairclough August 9, 2018

Electrically erasable programmable read-only memory (EEPROM) is a type of nonvolatile memory that enables users to repeatedly store and erase small amounts of data by applying a voltage pulse. EEPROM is often used as a storage medium in computers and mobile devices and has applications in devices like microcontrollers. To analyze the designs of EEPROM devices, engineers can turn to semiconductor simulation.

Lire la Suite

Brianne Christopher July 2, 2018

What do beer fermentation, soil analysis, and the production of dairy products have in common? They all involve the use of ion-sensitive field-effect transistors (ISFETs) for pH measurement. These sensors are small, efficient, and durable, which makes them suitable for food, environmental, and biomedical applications. However, ISFETs can experience drift and are sensitive to different temperatures, which limits their accuracy and stability. Using the COMSOL® software, engineers can accurately analyze ISFET designs and improve their performance.

Lire la Suite

Caty Fairclough June 20, 2018

Silicon planar devices, imaging sensors, and microprocessors often include a metal-oxide-silicon (MOS) capacitor. To ensure that these devices perform as expected in an application, engineers can accurately analyze their designs using simulation. With the Semiconductor Module, an add-on product to the COMSOL Multiphysics® software, there are multiple methods to do just that…

Lire la Suite

Brianne Christopher August 30, 2017

“I think I can safely say that nobody understands quantum mechanics.” — Richard Feynman, in The Character of Physical Law (1965). Although the Nobel-prize-winning physicist might have been speaking in jest, quantum mechanics is a difficult concept to teach — and simulate. Modeling a double-barrier structure in the COMSOL Multiphysics® software can help teach quantum mechanics concepts to physics students as well as enhance the research and development of semiconductor devices.

Lire la Suite

Chien Liu May 31, 2017

You can use the new Schrödinger Equation interface for modeling with the Semiconductor Module in the latest release of the COMSOL® software. Let’s look at a simple example app that uses this interface to estimate the electron and hole ground state energy levels for a superlattice structure. By building apps like this one, device engineers are able to calculate the band gap for a given periodic structure and adjust the design parameters until a desired band gap value is achieved.

Lire la Suite


Catégories


Tags

1 2