La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Effective Diffusivity in Porous Materials

Transport through porous structures is usually treated using simplified homogeneous models with effective transport properties. This is in most cases a necessity, since the typical dimensions of the pores and particles making up the porous structure are several orders of magnitude smaller than the size of the domain that is to be modeled. This model introduces the concept of effective ...

Electrical Signals in a Heart

Modeling the electrical activity in cardiac tissue is an important step in understanding the patterns of contractions and dilations in the heart. The heart produces rhythmic electrical pulses, which trigger the mechanical contractions of the muscle. A number of heart conditions involve an elevated risk of re-entry of the signals. This means that the normal steady pulse is disturbed, a severe and ...

Micromixer - Cluster Version

This example studies a laminar static micromixer with two parallel sets of split-reshape-recombine mixing elements. The mixer works through lamination of the streams without any moving parts and the mixing is obtained through diffusion. The purpose of this model is to demonstrate how to access the cluster computing functionality in COMSOL from COMSOL Desktop and use it to submit a batch job to ...

Transport and Adsorption

This model demonstrates how to model phenomena defined in different dimensions in a fully coupled manner using COMSOL Multiphysics. Whereas in most cases the reaction rate expression is defined as a function of the concentrations of the reactants and products, in adsorption reactions it is also necessary to model the surface concentrations of the active sites or surface complex. This implies ...

Steady-State 2D Heat Transfer with Conduction

This example shows a 2D steady-state thermal analysis including convection to a prescribed external (ambient) temperature. It is given as a benchmarking example. The benchmark result for the target location is a temperature of 18.25 C. The COMSOL Multiphysics model, using a default mesh with 556 elements, gives a temperature of 18.28 C. Successive uniform refinements show a temperature of 18.26 ...

Fixed Bed Reactor for Catalytic Hydrocarbon Oxidation

Tubular reactors are generally modelled with the assumption that the concentration and temperature gradients only occur in the axial direction. The only transport mechanism operating in this direction is the overall flow itself, which is considered to be of plug-flow. In this example a more general approach is taken, an approach that accounts for variations of the concentrations and temperature ...

Loaded Spring - Using Global Equations to Satisfy Constraints

Global equations are a way of adding an additional equation to a model. A global equation can be used to describe a load, constraint, material property, or anything else in the model that has a uniquely definable solution. In this example, a structural mechanics model of a spring is augmented by a global equation which solves for the load to achieve a desired spring displacement.

Thin-Film Resistance

In modeling of transport by diffusion or conduction in thin layers, we often encounter large differences in dimensions of the different domains in a model. If the modeled structure is a so-called sandwich structure, we can replace the thinnest geometrical layers with a thin layer approximation, provided that the difference in thickness is very large. This method can be used in many ...

Diffraction Patterns

This example resembles the well-known 2-slit interference experiment often demonstrated in schools with water waves or sound. This model mimics the plane-wave excitation with two thin waveguides leading to slits in a screen, and it computes the diffraction pattern on the screen’s other side. This diffraction pattern is clearly visible. The main effect of quantization is that the numerical ...

Pacemaker Electrode

This model illustrates the use of COMSOL Multiphysics for modeling of ionic current distribution problems in electrolytes, in this case in human tissue. The problem is exemplified on a pacemaker electrode, but it can be applied in electrochemical cells like fuel cells, batteries, corrosion protection, or any other process where ionic conduction takes place in the absence of concentration ...