La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Eigenmodes of a Room

When designing a concert hall it’s extremely important to take the resonances into account. For a clear and neutral sound, the eigenfrequencies should be evenly spread through the registers. For the home stereo owner, who can’t actually change the shape of his living room, another question is more relevant: where should the speakers be put for best sound? To illustrate the effects we are ...

Rock Fracture Flow

A potential flow model of fluid flow in a rock fracture uses the so-called Reynolds equation. It shows how to use experimental data interpolated to a function used in the equation.

Convective Cooling of a Busbar

This is a template MPH-file containing the physics interfaces and the parameterized geometry for the model Electrical Heating in a Busbar.

Implementing a Point Source

This model solves the Poisson equation on a unit disk with a point source in the origin. The easiest way to describe a point source in COMSOL Multiphysics is by using an extra weak term. To obtain the weak formulation of the general Poisson equation, we multiply it with a test function u_test and integrate over the domain. The mesh density is dense, close to the origin, so as to resolve the ...

Virtual Operation on a Wheel Rim Geometry

This tutorial shows how to perform virtual geometry operations on an imported CAD geometry. These virtual operations, such as form composite entities or ignore entities can help to improve the mesh and reduce the total element number.

An Integro-Partial Differential Equation

The heat distribution in a hollow pipe, whose ends are held at two different temperatures, is studied. The outside surface is assumed to be thermally isolated and the inner surfaces have radiation boundary conditions. The role of convection in the heat transfer is taken to be negligible. The temperature is assumed to be constant along the thickness of the pipe and rotational symmetry is also ...

Steady-State 1D Heat Transfer with Radiation

The example shows a 1D steady-state thermal analysis including radiation to a prescribed ambient temperature. The temperature field from the solution of this benchmark model is compared with a NAFEMS benchmark solution.

Electric Sensor

This is a model from electric impedance tomography, a method of imaging the interior permittivity distribution of a body by measuring current and voltage at the surface. This model demonstrates how the shape and placement of figures with different material properties inside a closed box can be determined with this non-invasive technique. Applying a potential difference on the boundaries of ...

Shock Tube

A shock tube is a device for studying shock waves. Prior to starting an experiment, a diaphragm inside the tube blocks any flow. You increase the pressure on one side, such as with a compressor, and then start the flow by rupturing the diaphragm. The gas expands down the other half of the tube. Through optical means you can observe the flow and model the action of shocks. A pressurized tube ...

Stresses in a Pulley

The stresses in a pulley connected to an engine that drives another pulley are studied in this model. A parametric analysis is conducted in order to study how the rotational speed affects the stress distribution in the pulley. The power at the pulley shaft remains constant, the moment (defined by the ratio of the power by the rotational speed) will thus decrease with increased speed. This ...