Application Gallery

La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Process Control Using a PID Controller

This model shows how a flow model can be coupled to a process control mechanism. Controlling application parameters according to other application parameters is important within process engineering. Most control mechanisms use the data at a wall or an outlet to control inlet parameters. More accurate control can occur if you can control inlet parameters due to data found within a component or ...

Rock Fracture Flow

A potential flow model of fluid flow in a rock fracture uses the so-called Reynolds equation. It shows how to use experimental data interpolated to a function used in the equation.

Axisymmetric Transient Heat Transfer

This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the anlysis is compared with a NAFEMS benchmark solution.

Automotive Muffler

This model simulates the pressure wave propagation in a muffler for a combustion engine. It uses a general approach for analysis of damping of the propagation of harmonic pressure waves. The model is solved in the frequency domain and provides efficient damping in a frequency range of 100-1000 Hz.

Conical Quantum Dot

Quantum dots are nano- or microscale devices created by confining free electrons in a 3D semiconducting matrix. Those tiny islands or droplets of confined “free electrons” (those with no potential energy) present many interesting electronic properties. They are of potential importance for applications in quantum computing, biological labeling, or lasers, to name only a few. Quantum dots ...

Micromixer

The development of mixers does often not only have to account for effectiveness, but also other factors must be involved, such as cost and complexity for manufacturing. The three models study a laminar static micro mixer with two parallel sets of split-reshape-recombine mixing elements. The mixer works through lamination of the streams without any moving parts and the mixing is obtained through ...

The Telegraph Equation

This model examines how telegraph wire transmits a pulse of voltage using the telegraph equation. The telegraph equation models mixtures between diffusion and wave propagation by introducing a term that accounts for effects of finite velocity to a standard heat or mass transport equation. In this model a small section of a telegraph wire is treated to study the pulse of voltage moving along ...

An Integro-Partial Differential Equation

The heat distribution in a hollow pipe, whose ends are held at two different temperatures, is studied. The outside surface is assumed to be thermally isolated and the inner surfaces have radiation boundary conditions. The role of convection in the heat transfer is taken to be negligible. The temperature is assumed to be constant along the thickness of the pipe and rotational symmetry is also ...

Implementing a Point Source

This model solves the Poisson equation on a unit disk with a point source in the origin. The easiest way to describe a point source in COMSOL Multiphysics is by using an extra weak term. To obtain the weak formulation of the general Poisson equation, we multiply it with a test function u_test and integrate over the domain. The mesh density is dense, close to the origin, so as to resolve the ...

Flow Between Parallel Plates

This example models the developing flow between two parallel plates. The purpose is to study the inlet effects in laminar flow at fairly moderate Reynolds numbers, in this case around 40. The problem might seem of academical nature but it is actually fairly common in catalytic reactors, heat exchangers, micro reactors etc. Symmetry along the thickness of the domain helps to reduce the ...

Quick Search