La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Heat Sink

This model is intended as a first introduction to simulations of fluid flow and conjugate heat transfer. It shows you how to: Draw an air box around a device in order to model convective cooling in this box, set a total heat flux on a boundary using automatic area computation, and display results in an efficient way using selections in data sets.

Free Convection in a Water Glass

This model treats the free convection and heat transfer of a glass of cold water heated to room temperature. Initially, the glass and the water are at 5 °C and are then put on a table in a room at 25 °C. The nonisothermal flow is coupled to heat transfer using the Heat Transfer module.

Shell-and-Tube Heat Exchanger

Shell-and-tube heat exchangers are commonly used in oil refineries and other large chemical processes. In this model, two separated fluids at different temperatures flow through the heat exchanger, one through the tubes (tube side) and the other through the shell around the tubes (shell side). Several design parameters and operating conditions influence the optimal performance of a shell and ...

Evaporative Cooling of Water

This tutorial shows how to couple three physics interfaces to model evaporative cooling. The effects that need to be taken into account are heat transfer, transport of water vapor, and fluid flow. The Wet Surface feature is used to implement the source term for the water vapor and to compute the evaporative heat source available from the Boundary Heat Source feature. The Moist Air feature is ...

Parameterized Woven Carbon Fibers Geometry

This model and presentation shows how to model anisotropic properties of fibers in a heat transfer simulation. Because the fibers orientation is not easy to define explicitly, the curvilinear coordinate interface is used to define the fiber orientation. The fibers have high thermal conductivity in the fiber direction and low conductivity in the perpendicular direction.

Cooling and Solidification of Metal

This example is a model of a continuous casting process. Liquid metal is poured into a mold of uniform cross section. The outside of the mold is cooled and the metal solidifies as it flows through. When the metal leaves the mold, it is completely solidified on the outside, but still liquid inside. The metal will continue to cool and eventually solidify completely, at which point it can be cut ...

Free Convection in a Light Bulb

This model treats the free convection of argon gas within a light bulb. It shows the coupling of heat transport (conduction, radiation and convection) to momentum transport (non-isothermal flow) induced by density variations caused by temperature. COMSOL Multiphysics model makes it possible to determine the temperature distribution on the outer surface of the bulb, as well as the temperature ...

Heating Circuit

Small heating circuits find use in many applications. For example, in manufacturing processes, they heat up reactive fluids. The device in this tutorial example consists of an electrically resistive layer deposited on a glass plate. The layer results in Joule heating when a voltage is applied to the circuit, which results in a structural deformation. The layer’s properties determine the amount ...

Convection Cooling of Circuit Boards - 3D Natural Convection

The suite of models examine the air cooling of circuit boards populated with multiple integrated circuits (ICs), which act as heat sources. Two possible cooling scenarios are depicted: vertically aligned boards using natural convection, and horizontal boards with forced convection (fan cooling). In this case, contributions caused by the induced (forced) flow of air dominate the cooling. To ...

Forced Air Cooling with Heat Sink

Heat sinks are usually benchmarked with respect to their ability to dissipate heat for a given fan curve. One possible way to carry out this type of experiment is to place the heat sink in a rectangular channel with insulated walls. The temperature and pressure at the channel’s inlet and outlet, as well as the power required to keep the heat sink base at a given temperature, is then measured. ...

First
Previous
1–10 of 90