Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Single Mode Microwave Heating of Copper Powder Metal Compacts

J. Ma, C.T. Smith, G.J. Weisel, B.L. Weiss, N.M. Miskovsky, and D.T. Zimmerman.
The Pennsylvania State University.

We present numerical simulations that complement our experimental results of the microwave heating of copper powder metal compacts in separate electric (E) and magnetic (H) fields of a TE102 cavity. In general, thermal dissipation in the compacts may be attributed to resistive heating, dielectric losses, and magnetic losses. These dissipative mechanisms are coupled to the fields by the effective ...

Design and Simulation of a Spout Fluid Bed Coating System

Joel L. Plawsky and Howard Littman
Department of Chemical and Biological Engineering
Rensselaer Polytechnic Institute
Troy, NY

Since aerogel materials are open cell, inorganic foams, the surface pores of the material must be sealed for large scale application. Here we discuss the design and development of a spout fluid bed system for producing coated aerogel particle material. COMSOL Multiphysics was used in the design of the system to track the details of the flow field and individual aerogel particle trajectories. ...

Using COMSOL Multiphysics to Model Viscoelastic Fluid Flow

B.A. Finlayson
Department of Chemical Engineering, University of Washington

Viscoelastic fluids have first normal stress differences even in rectilinear flow. Thus, they are more complicated than purely viscous non-Newtonian fluids modeled as a power-law model or Carreau model. Viscoelastic effects must be included when modeling the flow of polymer melts and concentrated polymer solutions in situations for which the normal stresses matter. The extrudate swell problem ...

Optimization of an Adiabatic Demagnetization Refrigerator’s Superconducting Magnet Shield for the Micro-X High-Resolution Microcalorimeter X-ray Imaging Rocket

E. Figueroa-Feliciano[1], M. Cavolowsky[2], C. Macklin[2], Z. Li[1], A. Sharer[2], and A. Walker[2]
[1] Massachusetts Institute of Technology, Cambridge, MA
[2] Olin College, Needham, MA

We are working on the design of a sounding rocket payload to perform high-resolution imaging spectroscopy of the Puppis A supernova remnant. This rocket payload uses Transition-Edge-Sensor Microcalorimeters, which are superconducting detectors that obtain very high (2 eV FWHM at 6 keV) imaging spectra. These devices need to be cooled to 50 mK, for which we are designing an adiabatic ...

Electric Current Model of Varying Tissue Properties

D.J. Evans[1], and M.L. Manwaring[1,2]
[1] Brain Instrumentation Lab, Brigham Young University
[2] University of Idaho, Moscow

A COMSOL Multiphysics 2D model of human tissue focuses on the change in dielectric properties (conductivity and permittivity) due to temperature, tissue type, blood flow, structure and other properties. These induced changes in dielectric properties result in significant changes in temperature and possible breakdown of the tissue. The result of this complex interaction is a feedback loop that ...

Modeling Acoustic Wave Scattering from Cells and Microbubbles

O. Falou [1], J.C. Kumaradas[2], and M.C. Kolios[1,2]
[1] Dept. of Electrical and Computer Engineering, Ryerson University
[2] Dept. of Physics, Ryerson University

A finite-element model of wave propagation using COMSOL Multiphysics has been developed to solve the problem of ultrasound scattering from spherical structures. This model will be used to predict ultrasound backscatter from cells for ultrasound tissue characterization, and scattering from microbubble contrast agents. In this paper, we discuss an improvement to our model by using a ...

Thermoelastic Instability in Disk Brakes: Simulation of the Heat Generation Problem

M. Eltoukhy[1], S. Asfour,[1], M. Almakky[2], and C. Huang[3]
[1] Department of Industrial Engineering, University of Miami
[2] Department of Production Engineering, Alexandria University
[3] Department of Biomedical Engineering, University of Miami

In this paper a transient analysis of the thermoelastic contact problem for disk brakes with frictional heat generation is performed using the finite element analysis (FEA) method. The computational results are presented for the distribution of the temperature on the friction surface between the contacting bodies (the disk and the pad). Also, the influence of the material properties on the ...

Modeling Remote H2 Plasma in a Semiconductor Processing Tool

J. Brcka
TEL Technology Center, America, LLC

Hydrogen plasma is typically used in the semiconductor industry for materials processing, surface preparation and cleaning of silicon wafers and thin films. In this contribution, we developed a 2D/3D plasma fluid model as described by the set of the species and energy balance equations in a generic semiconductor tool chamber with remote Inductively Coupled Plasma (ICP) source. Background ...

Simulation of the Capacitive Double Layer at the Interface between Microelectrodes and Cortical Tissue Using Comsol Multiphysics and SPICE Modeling

R.M. Field, and M. Ghovanloo
NC-Bionics Laboratory, North Carolina State University

The interface between microelectrodes and biological tissue is of great interest to researchers working on extracellular stimulation. In this paper, we outline a method used to model the complex double layer capacitance at the interface between the electrodes and the cortex. This model relies on the combined power of SPICE, MATLAB, and COMSOL Multiphysics. The goal of this model is to ...

Solidification of a Liquid Metal Droplet Impinging on a Cold Surface

Tanai L. Marin,
Faculty of Physics and Mathematics Sciences,
Department of Mining Engineering,
University of Chile,
Santiago, Chile

A method for the solidification of a free surface liquid phase is presented and solved with COMSOL Multiphysiscs using a fixed grid. In this case, the Level set method with phase re-injection for mass conservation is used to prescribe the movement of the free surface of the liquid droplet, whereas a modified version of the method presented by Voller and Prakash is used to account for the ...

Quick Search