Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Use of COMSOL Multiphysics in the Modeling of Ion Source Extraction

M. Cavenago
Laboratori Nazionali di Legnaro

A two dimensional description of plasma charged sheath and ion extraction, including the complete plasma sheath equation, is proposed and reduced to a system of coupled fields, implemented with use of COMSOL Multiphysics. A separate application of the weak form to the Hamilton-Jacobi and Poisson equations is also described, using five coupled fields.

A FEM Analysis of Transport Phenomena occurring during Vegetable Drying

S. Curcio
University of Calabria

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in a food drying process by a convective oven. The proposed model represents a general and predictive tool capable of describing the real oven’s behavior over a wide range of process and fluid-dynamic conditions. The resulting system of non-linear unsteady-state partial ...

Thermal and Velocity Field Analysis Inside an Historical Building - The Hall of the Two Hundred

C. Balocco
Energy Engineering Department, Firenze

For museums and the like, the indoor climatic conditions should preserve the exhibited works of art and ensure comfort conditions for people visiting or working inside them. The present paper concerns a primary study of the Hall of the Two Hundred of the Old Palace in Florence. General 3D modeling principles were used, which can be applied to many situations where there is interaction ...

Numerical Simulation of the Heat Transfer and Elastic Dynamics of Nanodisk Arrays in Pump-Probe Laser Experiments

B. Revaz[1,2], C. Giannetti[2], F. Banfi[1], M. Montagnese[3], G. Ferrini[2], and F. Parmigiani[3,4]
[1] University of Geneva, Switzerland
[2] Università Cattolica del Sacro Cuore, Brescia
[3] Università degli Studi di Trieste
[4]Sincrotrone Trieste, I-34012 Basovizza, Trieste

We present in this paper, numerical simulations of the heat transfer and elastic dynamics of permalloy nanodisks on crystalline Si. The goal of this work is to simulate recent pump-probe laser experimental results obtained in our laboratory.

Transient Heat Conduction in Solids Irradiated by a Moving Heat Source

N.Bianco, O.Manca, S. Nardini, and S. Tamburrino
Università degli Studi di Napoli, Italy

Transient three-dimensional temperature distribution in a solid, irradiated by a moving Gaussian laser beam, was investigated numerically by means of COMSOL Multiphysics. Convection and radiation from the work-piece surfaces as well as variable thermophysical properties are accounted for.

Finite Element Analysis of Electro-mechanical Deflection of Cantilevers for SPM and MEMS Applications

D. Moro, and G. Valdrè
University of Bologna

The understanding of the distribution of electrostatic forces at the nanoscale is of fundamental importance for the development of nanotechnology. In this work, in order to quantify the EFM cantilever/tip-sample interaction, we present a 3D static Finite Element Analysis of the electromechanical interaction between conductive probes and samples, using COMSOL Multiphysics. The simulation ...

Modeling of a Preferential Oxidation Reactor in a LPG Hydrogen Generator for PEMFC

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

This paper presents a two dimensional model of a Preferential Oxidation Reactor. The main aim of the mathematical model was to investigate the process performance of the reactor by parametric analysis. Temperature and concentration profiles along the length of the reactor were evaluated in order to enhance optimization and control of the PROX unit.

Modeling and Simulation in Bio-Electronics

M. Longaretti, G. Marino, and R. Sacco
Politecnico di Milano

In this communication, we deal with the numerical simulation of Voltage Operated ionic Channels (VOC) in Bio-Electronics. Suitable functional iteration techniques for problem decoupling and finite element methods for discretization are proposed and discussed. Model and computational procedures are validated in the simulation of a real-life VOC under several working conditions.

Fouling of Heat Exchangers in the Dairy Industry by Coupling Flow and Kinetics Modelling

M.V. De Bonis, and G. Ruocco
CFDfood, DITEC, Università degli studi della Basilicata, Potenza

The present work exploits modelling of a heat exchanger single channel during the pasteurization of milk. A 2D computation has been performed with COMSOL Multiphysics showing the potential application to optimized geometries and for a variety of products of known biochemical evolution.

Nonlinear Magnetic Analysis of Multi-plate Magnetorheological Brakes and Clutches

M. Benetti, and E. Dragoni
University of Modena and Reggio Emilia

This paper deals with the nonlinear magnetic analysis of a 100 Nm, multi-disc, magnetorheological fluid rotary brake or clutch, carried out with COMSOL Multiphysics. Along with the results of the analysis, the paper presents merits and limitations found in the use of the software and introduces current efforts to include in future simulations the thermal and the mechanical responses of the ...

Quick Search