Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices

L. Graber[1], N.G. Suttell[1], D. Shah[1], D.G. Crook[1], C.H. Kim[1], J. Ordonez[1], S. Pamidi[1]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA

Heat sinks for cryogenic applications using helium gas as the coolant are not readily available. They require to be designed specifically for the intended application. A finite element model was developed to study the feasibility and optimize the design. The FEM computing package COMSOL Multiphysics allowed to couple fluid flow and heat transfer as needed. An experiment was designed to validate ...

Load Cell Design Using COMSOL Multiphysics

A. Marchidan[1], T. Sullivan[1], J. Palladino[1]
[1]Trinity College, Hartford, CT, USA

COMSOL Multiphysics was used to design a binocular load cell. A three-dimensional linear solid model of the load cell spring element was studied to quantify the high-strain regions under loading conditions. The load cell was fabricated from 6061 aluminum, and general purpose Constantin alloy strain gages were installed at the four high-strain regions of the spring element. The four gages were ...

COMSOL Thermal Model for a Heated Neural Micro-Probe

M. Christian[1], S. Firebaugh[1], A. Smith[1]
[1]United States Naval Academy, Annapolis, MD, USA

This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat equation with an external MATLAB function to determine the heat generation along the length of the probe. ...

Modeling Microwave Waveguide Components: The Tuned Stub

R.W. Pryor[1]
[1]Pryor Knowledge Systems, Bloomfield Hills, MI, USA

The waveguide device modeled here specifically demonstrates the exploration of a small, but very important, subset of components of the family of microwave hardware devices designed to facilitate the optimized transfer of power from the generating source to the consuming load. Each of those components is called, in electronics terminology, a Tuned Stub. A stub is a length of transmission line ...

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model

N. Kandev[1]
[1]Institut de recherche d'Hydro-Québec, Shawinigan, QC, Canada

This work presents the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of an electromagnetic DC pump for liquid metal using a rectangular metal flow channel subjected to an externally imposed transversal inhomogeneous magnetic field. In this study. 3D numerical simulation based on the finite element method was carried out using the computer package COMSOL Multiphysics 3.5a. The ...

Numerical Study and Simulation in COMSOL Multiphysics of the Dilution Process during Dust Sampling in Dry Machining

B. Wenga-Ntcheping[1], A. Djebara[1], R. Kamguem[1], J. Kouam[1], V. Songmene[1]
[1]University of Quebec-École de Technologie Supérieure, Montreal, Canada

Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine particles produced during material cutting, passed through the dilution of high particle concentration ...

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

N. Brunner[1][,][2]
[1]Voxtel, Inc, Beaverton, OR, USA
[2]University of Oregon, Eugene, OR, USA

In this paper the heat transfer module in COMSOL is utilized to simulate internal heating of an Avalanche Photodiode due to light-induced current through a resistivity that depends on charge carrier concentrations in the device. Initial tests are done by modeling the heating process on a previously-solved silicon p-n junction as a proof of concept before advancing to a more complicated geometry. ...

Early Stage Melt Ejection in Laser Percussion Drilling

T. Eppes[1]
[1]University of Hartford, Hartford, CT, USA

Laser percussion drilling is widely used in the aerospace industry to produce cooling holes in jet engine components. This process is a thermal, contact-free process which involves firing a sequence of focused optical pulses onto a target material [1-4]. During each optical pulse, the central portion of the target area heats to a liquid then vapor state where the expanding gas produces a recoil ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

S. Khushrushahi[1], T.A. Hatton[1], M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Magnetic separation of magnetic liquid phases/particles from non-magnetic liquid phases/particles are needed for applications such as cleaning up oil spills by separating oil and water liquid phases or separating magnetic materials from non-magnetic materials in biomedical and microfluidic applications. Magnetic fluids (also called ferrofluids), in a magnetic field, experience a magnetic force ...

Quick Search