Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Computational Analysis of Evaporation in Tailored Microchannel Evaporators

S. Arslan[1], J. Brown[1]
[1]Lawrence Technological University, Southfield, MI, USA

The rapid increase in power densities of integrated circuits has induced a significant interest in new reliable and high heat flux cooling technologies. The implication of such growth is the increased need for more efficient and more compact cooling mechanisms. Promising research has been conducted in the area of MEMS cooling devices, taking advantage of the increased heat transfer ...

Numerical Study of Droplet Formation inside a Microfluidic Flow-Focusing Device

Y. Li[1], M. Jain[1], K. Nandakumar[1]
[1]Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

The micro-nanometer sized droplets have tremendous applications in bio-diagnostics, polymerization processes etc. In this work, we numerically investigate the droplet formation process of silicone oil in aqueous solution in a MFF device. A conservative level-set method is adopted to numerically model the droplet formation process numerically. The mono-dispersed and poly-dispersed droplet ...

Conjugate Heat Transfer

J. Crompton[1], L. Gritter[1], S. Yushanov[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

Quenching from high temperature by fluid flow has been analyzed; when no phase transformation occurs heat transfer is a function of conduction and convection. Flow conditions may lead to turbulent flow that affects the heat dissipation over the surface. Analysis of heat transfer with phase transformation is more complex ue to the range of near-wall effects from film boiling, transition boiling, ...

Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices

L. Graber[1], N.G. Suttell[1], D. Shah[1], D.G. Crook[1], C.H. Kim[1], J. Ordonez[1], S. Pamidi[1]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA

Heat sinks for cryogenic applications using helium gas as the coolant are not readily available. They require to be designed specifically for the intended application. A finite element model was developed to study the feasibility and optimize the design. The FEM computing package COMSOL Multiphysics allowed to couple fluid flow and heat transfer as needed. An experiment was designed to validate ...

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

N. Brunner[1][,][2]
[1]Voxtel, Inc, Beaverton, OR, USA
[2]University of Oregon, Eugene, OR, USA

In this paper the heat transfer module in COMSOL is utilized to simulate internal heating of an Avalanche Photodiode due to light-induced current through a resistivity that depends on charge carrier concentrations in the device. Initial tests are done by modeling the heating process on a previously-solved silicon p-n junction as a proof of concept before advancing to a more complicated geometry. ...

Modeling the Squeeze Flow of a Thermoplastic Composite Tape during Forming

A. Levy[1], G.P. Picher Martel[1], P. Hubert[1]
[1]McGill University, Montreal, QC, Canada

Thermoplastic composite such as APC2 (Carbon/PEEK) are usually shipped as semi-finite tape products. Final product is obtained with forming by applying heat and pressure. A key phenomena is the squeezing of the tape. In this paper we compare the solution of the squeeze flow using a finite element method, an analytical model under lubrication assumption and experimental data. The finite element ...

Modeling and Analysis of a Direct Expansion Geothermal Heat Pump (DX): Part I-Modeling of Ground Heat Exchanger

C. Rousseau[1], J. Fannou[1], L. Lamarche[1], M. Ouzzane[2]
[1]École de Technologie Supérieure, Montréal, Québec, Canada
[2]CanmetENERGY, Varennes, Québec, Canada

Geothermal heat pump technology is actually one of the most interesting processes to provide heat and cold to a building. In this study, a model of the ground exchanger of a direct expansion geothermal heat pump (DX) is going to be presented in 1 dimension. The model represents the phase change of the refrigerant, here Chlorodifluoromethane R22, with governing continuity, momentum and energy ...

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]
[1]OSRAM SYLVANIA, Beverly, MA, USA

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

Modeling Microwave Waveguide Components: The Tuned Stub

R.W. Pryor[1]
[1]Pryor Knowledge Systems, Bloomfield Hills, MI, USA

The waveguide device modeled here specifically demonstrates the exploration of a small, but very important, subset of components of the family of microwave hardware devices designed to facilitate the optimized transfer of power from the generating source to the consuming load. Each of those components is called, in electronics terminology, a Tuned Stub. A stub is a length of transmission line ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...