Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

L. C. Zaragoza[1], B. Hondorp[2], M. A. Rossi[3]
[1]ITESM, Monterrey, Mexico
[2]Rush Medical College, Chicago, IL, USA
[3]Rush University Medical Center, Chicago, IL, USA

The goal of our work was to calculate a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element method (FEM) models derived from SPGR magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), ...

Theory of Proportional Solenoids and Magnetic Force Calculation Using COMSOL Multiphysics

O. Vogel, and J. Ulm
Heilbronn University
Campus Künzelsau
Künzelsau, Germany

Proportional solenoids are well-known and used in a wide range of applications today. This paper is about methods of influencing the characteristic force-stroke-curves of magnetic actuators by means of different pole geometries. The conical design of the stator pole which is mostly used to accomplish proportional solenoids is analyzed by both a simple analytic reluctance model and a FEM model ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure sensors are proposed to enhance its sensitivity in terms of output voltage. This paper aims in sensitivity ...

Design & Development of Helmholtz Coil for Hyperpolarized MRI

V. Bhatt, R.S Rautela, P. Sharma, D.C. Tiwari, and S. Khushu
Institute of Nuclear Medicine & Allied Sciences (DRDO), Delhi, India

The Helmholtz Coil generates a uniform magnetic field. The commercially available large-size Helmholtz coils prove to be very expensive. This paper describes the economical method of designing and construction of a Helmholtz coil. COMSOL Multiphysics AC/DC Module simulated results and actual results were compared in this study. The coil serves as a component in the system for Hyperpolarisation of ...

Accurate geometry factor estimation for the four point probe method using COMSOL Multiphysics

Kalavagunta, A., Weller, R.A.
Vanderbilt University, Nashville, TN

The four-point probe is a tool for measuring the resistivity of a material by contact with its surface. The tool is widely used in the semiconductor industry and has applications both in research and manufacturing. The method though is quite sensitive to various paramaters like the substrate material, probe separation, probe depth etc. In this paper we show that COMSOL multiphysics can be used ...

Modeling and Simulation of High Permittivity Core-Shell Ferroelectric Polymers for Energy Storage Solutions

N. Badi[1], R. Mekala[1]
[1]University of Houston, Houston, TX, USA

The dielectric properties of ferroelectric PVDF polymer embedded core-shell (Al-Al2o3) nanoparticle is simulated using COMSOL Multiphysics® software. Significant increase in electrical permittivity of the composite at percolation threshold (K = 2800) is achieved when compared to electrical permittivity of bare polymer (K = 12). Both Maxwell Garnett and Symmetric Bruggeman models gave an ...

Magnetic Particle Motion in a Gradient Field

U. K. Veeramachaneni, and R. Lloyd Carroll
Department of Chemistry, West Virginia University, Morgantown, WV, USA

A model is presented for predicting the motion of magnetizable particles in a gradient magnetic field, considering the effects of fluidic forces on particles in the micro system.The micro system consists of a gradient magnetic field (such as that produced by a solenoid or permanent magnet), a magnetizable particle, and the fluid surrounding the particle (water).Particles located in the gradient ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Quick Search

1 - 10 of 443 First | < Previous | Next > | Last