Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Designing of End-winding Corona Protection of Generators by Help of Simulation

M. Wei[1], S. Grossman[1], J. Speck[1]
[1]Institute of Electrical Power Systems and High Voltage Engineering, Technische Universität Dresden, Dresden, Germany

The job of designing end-winding corona protection (ECP) system is one of the very important and complex phases for insulation configuration of high voltage rotating machines. This complexity stems on one hand from the highly nonlinear characteristics of the ECP material and on the other hand from the coupled multiphysics phenomena of the involved performance evaluation. Simulation based ECP ...

Simulation of a Magnetic Induction Method for Determining Passive Electrical Property Changes of Human Trunk Due to Vital Activities

H. Mahdavi[1], J. Rosell Ferrer[1]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain

The human body consists of many different types of tissues each with specific passive electrical properties. Vital activities lead to a characteristic change of these properties and geometrical changes. Magnetic induction is a non-contact method which can be used to determine these changes. The method is based on the creation of a primary magnetic field that will produce eddy currents in the ...

Experimental Observation and Numerical Prediction of Induction Heating in a Graphite Test Article

T.A. Jankowski[1], D.P. Johnson[1], J.D. Jurney[1], J.E. Freer[1], L.M. Dougherty[1], and S.A. Stout[1]

[1]Los Alamos National Laboratory, Los Alamos, New Mexico, USA

The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. The experiments have been modeled in COMSOL Multiphysics and the numerical and ...

Finite Element Modeling for Inspection of CANDU® Steam Generators - new

S. G. Mokros[1], P. R. Underhill[2], J. Morelli[1], T. W. Krause[2]
[1]Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, Canada
[2]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

Steam generators (SGs) are used in CANDU® nuclear reactors as heat exchangers to convert water into steam using heat generated in the reactor core. Ferrous trefoil broach support structures prevent excessive vibration of thousands of SG tubes. A probe that uses pulsed eddy current (PEC) technology has been designed for inspection of support structures, from within SG tubes, to detect and ...

Simple Disk Piezo Transformer Based Oscillator - new

J. P. Sandoz[1], J. M. Kissling[1]
[1]Institute of Applied Microtechnology, La Chaux-de-Fonds, HE‐ARC, Switzerland

In this contribution we present a COMSOL Multiphysics® example of a disk piezoelectric ceramic transformer (D-PT) coupled with a bipolar NPN transistor to form an auto-oscillator. The comparison between the simulations and the measurements made on our prototype are found to be in good agreement. Having at our disposal a large number of homogenously poled disks, we decided to build and to ...

Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications

D. Musuwathi Ekanath[1], N. Badi[1], and A. Bensaoula[2]
[1]Center for Advanced Materials, University of Houston, Houston, TX
[2]Dept. of Physics, University of Houston, Houston, TX

The need for high storage capacitors led to the development of polymer based capacitors. Polymers have high processability, mechanical flexibility, electrical breakdown strength and compatibility with printed circuit board (PCB) technologies; but usually have very low permittivity (K). In COMSOL Multiphysics software, the AC/DC module is selected and the In-plane electric currents are applied ...

Prototype Probe Development for Liquid Injection Shutdown System Tube Gap Detection by Remote Field Pulsed Eddy Current Technique

T. V. Shyam[1], B. S. V. G. Sharma[1], J. N. Kayal[1]
[1]Bhabha Atomic Research Centre, Trombay, Mumbai, India

Pressurised Heavy Water Reactors (PHWR) play a prominent role in contributing power for the Nuclear Energy Programme in India. In 540MWe type PHWR reactors, there are horizontally placed Liquid Injection Shutdown System (LISS) tubes for injecting poison into the moderator to clamp down the nuclear power under trip conditions. The Horizontally placed LISS pipes are placed perpendicular to the ...

Finite Element Modeling of Remote Field Eddy Current Phenomenon

T. Jayakumar[1], B. Purnachandra Rao[2], C. K. Mukhopadhyay[3], B. Sasi[2], V. Arjun[5], S. Thirunavukkarasu[2]
[1]Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[3]EMSI Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN, India
[5]NDE Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India

Remote field eddy current (RFEC) technique is a method of detecting defects in ferromagnetic tubes. This is based on low frequency eddy current, which employs an exciter coil and a receiver coil separated by a characteristic distance. The exciter is fed with a low frequency sinusoidal current and the receiver coil senses the perturbation of the magnetic fields caused by the eddy currents in the ...

Self-Consistent Modeling of Thin Conducting Wires and Their Interaction with the Surrounding Electromagnetic Field

G. Eriksson[1]
[1]ABB AB, Corporate Research, Västerås, Sweden

It is demonstrated how the RF Module of COMSOL Multiphysics® can be used to approximately model thin conducting wires or cables and how they interact with a surrounding electromagnetic field. Despite being non-stringent the method can reasonably well predict currents induced by an applied electromagnetic field in wires, and networks of wires, as well as fields radiated from current-carrying ...

Pulsed Power Accelerator Design with COMSOL Multiphysics® Software - new

D. Reisman[1]
[1]Sandia National Laboratories, Albuquerque, NM, USA

We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good margin against electrical breakdown. By using a three-dimensional electromagnetic model of the entire power ...