Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation - new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of transducer that is based upon poorly-configured FE models is unlikely to perform as expected and will almost ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Modeling Metamaterials with a Time-Domain Perfectly Matched Layer Formulation

H. Assi [1], R. S. C. Cobbold [1],
[1] University of Toronto, Toronto, ON, Canada

INTRODUCTION: Perfectly matched layers (PML) have been widely used for simulating wave propagation in unbounded media to effectively avoid spurious wave reflections from the computational domain boundaries. Time-domain PML formulations, especially for elastic waves, usually use a complex system of first-order equations. Compact second-order time-domain formulations are particularly desired ...

3D Acoustic Streaming Field in High-Intensity Discharge Lamps - new

B. Baumann[1], J. Schwieger[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge lamps will in the foreseeable future be important light sources despite a growing market share of LEDs. Cost and energy efficient high frequency (300 kHz) operation is hampered by the excitation of acoustic resonances inside the arc tube, which results in low frequency (10 Hz) light flicker. Our aim is to calculate the acoustic streaming velocity field, which is related ...

Multiphysics Simulations of Automotive Muffler

A. Prasad [1], R. C Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, India

This paper deals with the numerical experiments for early prediction of muffler performance at the design stage. In this experiment, a Reactive Muffler is developed and validated numerically compared to traditional built and test process.

Two- and Three-Dimensional Holey Phononic Crystals with Unit Cells of Resonators

Y.F. Wang[1][2], Y.S. Wang[1], L. Wang[2]
[1]Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing, China
[2]Department of Mechanical Engineering, Østfold University College, Halden, Norway

We show in this paper that by careful design of the geometry of the resonators, complete bandgap with relatively low center frequency can be obtained for 2D and 3D Phononic Crystals with resonators. The generation of the bandgap is due to the local resonance of the unit cell. Spring-mass and spring-pendulum models are developed to predict the boundaries of the complete bandgap. The predicted ...

PA Loudspeaker System Design Using Multiphysics Simulation

R. Balistreri [1],
[1] QSC Audio Products, LLC., Costa Mesa, CA, USA

This paper utilizes lumped circuits equivalent and pressure acoustics to simulate the behavior of a PA loudspeaker in order to improve its design.

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Calculation of Surface Acoustic Waves on a Piezoelectric Substrate using Amazon™ Cloud Computing

U. Vogel [1], M. Spindler [1], S. Wege [1], T. Gemming [1]
[1] Leibniz Institute for Solid State and Materials, Dresden, Germany

In this work, we seek to simulate SAWs for a better understanding and to benchmark the currently available cloud computing possibilities of COMSOL Multiphysics® software. By using the MEMS module we demonstrate 3D models with reduced geometry to achieve principle information about the wavefield. For a benchmark, a high-speed workstation with limited memory (RAM) is compared to the most potent ...

Multiphysics Modeling of Sound Absorbing Fibrous Materials

T. G. Zielinski [1]
[1] Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Many of fibrous materials are very good sound absorbers, because the acoustic waves, which propagate in air and penetrate a fibrous layer, interact with the fibers so that the wave energy is dissipated. The dissipation is related to some viscous and thermal effects occurring on the micro-scale level. On the macroscopic level, a fibrous medium can be treated as an effective inviscid fluid, ...

1–10 of 295