Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Acoustic Emission Simulation for Online Impact Detection

C. Yang, M. A. Torres-Arredondo, and C.-P. Fritzen
Institute of Mechanics and Control Engineering
University of Siegen
Siegen, Germany

Impact monitoring has been extensively studied by several researchers and it has been shown that damage extent can be correlated with the impact magnitude. In order to make the process cost-effective, simulation of the impact has been performed, to get the big training data set from modeling. The structural dynamic responses captured by PZT transducers due to impact events are recorded from ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Structured Ultrasonic Metasurfaces

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited
Bangalore, India

Ultrasonic acoustic waves usually encounter interfaces with significant impedance mismatch in practical medical or industrial imaging applications. A transparent interface can help to improve the performance of medical and industrial imaging and overall innovative applications. Similarly, a broadband total reflection interface can help to improve the architectural or transportation barrier ...

Using COMSOL to Support a Cost-Effective, Non-Destructive Evaluation Approach for Predicting Bolt Failure in Highway Bridges

A. Elyea, B. Doubek, G. Hubbard, and D. Ozevin
Department of Civil Engineering
University of Illinois at Chicago
Chicago, IL

The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, numerical models of nine different bolt geometries were developed. The numerical models included the ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Vibration and Acoustic Analysis of a Trussed Railroad Bridge under Moving Loads

R. Costley[1], H. Diaz-Alvarez[1], M. McKenna[1], A. Miller[1]
[1]U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA

Two finite element models have been developed to investigate the acoustic radiation from a Pratt truss train bridge. The first model was a time dependent structural model that determined the vibration response of the structure due to two wheels, representing a single axle, moving across the bridge at constant speed. This model was expanded to include multiple axles to represent a locomotive. The ...

Effects Of The Microstructure Of Fibrous Media On Their Acoustic Properties

C. Peyrega, and D. Jeulin
Center of Mathematical Morphology, Mines ParisTech, Fontainebleau, France

This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous network and the air surrounding it. At the microscopic scale the absorption of the acoustic wave is mainly due ...

Design of Resonator for Ultrasonic Motor with Vibrational Transmission Line using COMSOL

H. Tamura
Tohoku Institute of Technology

This paper is in Japanese.

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

Quartz Transducer Modeling for Development of BAW Resonators

L.B.M. Silva[1], E.J.P. Santos[1]
[1]Laboratory for Devices and Nanostructures, Electronics and Systems Department, Universidade Federal de Pernambuco, Recife, PE, Brasil

Transducer optimization is a key aspect for successful development and deployment of advanced sensors, especially when designing 3D structures for harsh environments. For piezoelectric transducers, plate thickness determines the operating frequency of the resonator, which is frequently tuned in the shear thickness vibration mode. Quartz has been the material of choice for the fabrication of bulk ...

Quick Search