Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...

Developing Solutions to Tonal Noise from Wind Turbines Using COMSOL Multiphysics® Software

J. M. Stauber [1], B. A. Marmo [1],
[1] Xi Engineering Ltd, Edinburgh, United Kingdom

Tonal noise from wind turbines can have effects on neighboring residences and its emission can result in strong regulatory penalties that can include the closure of wind farms. The authors present a model of a new broadband damping approach where containers filled with EniDamp™, an Advance Particle Damping (APD) material. The containers, so-called APD pods, are magnetically fixed to wind ...

Vibration Analysis of Rectangular Perforated Plates by COMSOL Multiphysics® Software

B. Raghavendra[1]
[1]SRM University & BITS Pilani University, Chennai, Tamil Nadu, India

Vibration analysis of perforated plates is extremely important when designing structures where resonance is the possible mode of failure. This paper deals with the vibration analysis of rectangular perforated plates with three different types of perforations. Vibration analysis is to be carried out by both COMSOL Multiphysics® Software and Experimental set-up. The applications of perforated ...

Simulation of Acoustical Transfer Paths for Active Noise Control

L. Fromme [1], J. Waßmuth [1], D. Wehmeier [1],
[1] Bielefeld University of Applied Sciences, Bielefeld, Germany

The knowledge of the acoustical transfer paths in active noise control systems is very important for the performance of the system. Unfortunately, simulation is challenging since even simple configurations require comprehensive experience in physics and modeling. Two test setups were chosen for basic investigations on modeling, simulation and validation. The first results presented here are ...


郁殿龙 [1], 温激鸿 [1], 尹剑飞 [1],
[1] 国防科学技术大学,长沙,湖南,中国

汽车、飞行器、舰船、高速列车等工程装备中,振动和噪声问题会严重影响装备可靠性、安全性、使用寿命和人员的健康。因此,减振降噪需求迫切,相关技术和研究也得到了前所未有的重视。 国防科技大学振动与噪声控制研究团队从2003年开始,致力于基于人工周期结构理论的弹性波传播特性、调控机理及其应用探索研究。将物理学领域中声子晶体、声学超材料等人工周期结构中的新概念与工程减振降噪应用相结合,设计研发了多种声波控制器件与结构。 COMSOL Multiphysics® 声学模块的丰富接口及其处理多物理场耦合问题的强大功能,为研究团队解决复杂多尺度结构的声振特性预报和减振降噪设计提供了有力的工具。在此平台上,研究团队设计了局域共振低频吸声材料,并依托学校“天河二号”超级计算机并行计算环境,开展了元胞尺度(mm量级)到部件尺度(m量级)模型的声学特性有限元建模求解 ...

Sound Propagation through Circular Ducts with Spiral Element Inside

W. Lapka
Poznan University of Technology, Poland

This paper examines a sound propagation without airflow through circular ducts with spiral element inside. Models are numerically computed in three-dimensions. The spiral element in the duct is a newly analyzed acoustical element, geometrically similar to the well-known Archimedes screw. It can be applied significantly in ducted systems, such as ventilation, air-conditioning and heat ...

Bloch Waves in an Infinite, Periodically-perforated Sheet

W. Maysenhölder[1]
[1]Fraunhofer Institute for Building Physics, Stuttgart, Germany

Bloch waves in infinite periodic structures – much in vogue in the present metamaterial age – can be conveniently studied by COMSOL Multiphysics® software. This is demonstrated by a simple, yet rich two-dimensional example: a perforated sheet with square symmetry. Instead of plane waves in homogeneous media, one has to deal with their generalizations: the Bloch waves. The frequencies of such ...

Feed-forward/Feed-backward Mechanical Amplification in the Mouse Cochlea

J. Soons[1,2], C. Steele[2], S. Puria[2]
[1]Lab of Biomedical physics, University of Antwerp, Antwerp, Belgium
[2]Department of Mechanical Engineering, Stanford University, Stanford, USA

Sound vibrations are collected from the external environment by the eardrum and are guided to the basilar membrane in the cochlea. Pressure differences in the two scalae of the cochlea result in a traveling wave on the basilar membrane. The tiny displacements are detected by the deflection of thousands of hair cells, situated along this membrane. It is hypothesized that some 3/4 of these hair ...

Simulation of SAW-Driven Microparticle Acoustophoresis Using COMSOL Multiphysics® Software

N. Nama [1], R. Barnkob [2], C. J. Kähler [2], T. J. Huang [1], F. Costanzo [1]
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA
[2] Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Neubiberg, Germany

Introduction - The ability to precisely manipulate fluid and particles at microscales is one of the essential requirements for various lab-on-a-chip applications such as drug diagnostics, chemical synthesis etc.[1] Recently, the nonlinear interaction of surface acoustic waves (SAW) with fluid at microscales has been utilized to achieve this aim. When surface acoustic waves interact with fluid ...

Influence of Thermal Conductivity and Plasma Pressure on Temperature Distribution and Acoustical Eigenfrequencies of High-Intensity Discharge Lamps

J. Schwieger[1], B. Baumann[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Heinrich-Blasius-Institute of Physical Technologies, Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge (HID) lamps are energy-efficient light sources with excellent color qualities. A three-dimensional model of a low-wattage lamp, which includes plasma, electrodes, and burner walls, was developed in COMSOL Multiphysics®. Most parameters appearing in the coupled differential equations of the model, such as viscosity, thermal and electrical conductivity are temperature ...