Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Feed-forward/Feed-backward Mechanical Amplification in the Mouse Cochlea

J. Soons[1,2], C. Steele[2], S. Puria[2]
[1]Lab of Biomedical physics, University of Antwerp, Antwerp, Belgium
[2]Department of Mechanical Engineering, Stanford University, Stanford, USA

Sound vibrations are collected from the external environment by the eardrum and are guided to the basilar membrane in the cochlea. Pressure differences in the two scalae of the cochlea result in a traveling wave on the basilar membrane. The tiny displacements are detected by the deflection of thousands of hair cells, situated along this membrane. It is hypothesized that some 3/4 of these hair ...

Design and Simulation of Capacitive Pressure Sensor for Condition Monitoring

S. Sushma[1], R. Surekha[1], K. J. Rudhresha[1], S. Sahu [1], S. Singh4 [1], S. L. Pinjare6 [1],
[1] Dept. of ECE, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India.

This poster focuses on the development of a capacitive pressure sensor for condition monitoring applications. One method to measure vibrations is to mount an pressure sensor on the vibrating machinery or object and measure the pressure exerted due to vibrations. Measured pressure level helps to detect any deviations from the normal conditions.

Modal Analysis of Microcantilever Response to Sine Wave Excitation Using Vibrational Speaker

M. Satthiyaraju [1], T. Ramesh [1],
[1] National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

The dynamic response of microcantilever, which is a simple microelectromechanical system (MEMS) structure, to sine wave excitation is studied using the vibrational speaker set up in the atmospheric damping. Microcantilever is fabricated using micro wire cut EDM process for high precision. Mostly silicon material is used for microsystems based structure. Here stainless steel was used and machined ...

Optimization of an Acoustic Waveguide for Professional Audio Applications

M. Cobianchi[1] and R. Magalotti[1]
[1] B&C Speakers S.p.a., Bagno a Ripoli, FI, Italia

In modern live sound reinforcement there is a growing use of line sources, obtained through the stacking of many loudspeakers with properly controlled wavefront shape. Thus the use of waveguides is mandatory in order to modify the shape and size of the wavefront exiting from professional compression drivers. With the help of COMSOL Multiphysics®, we have designed a waveguide featuring an ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Simulation Studies on the Design of a Helmholtz Resonator type Underwater Acoustic Sensor

Karthi Pradeep[1], G. Suresh[2], V. Natarajan[2],
[1]National Institute of Technology, Tiruchirappalli, Kerala, India
[2]Naval Physical & Oceanographic Laboratory (NPOL), Kochi, Kerala, India

A Helmholtz resonator type acoustic sensor has been designed using analytical method and finite element modeling software, COMSOL Multiphysics®. The acoustic sensor is an aluminium double frustum, hour glass, shaped with the resonator at the bottom and an acoustic horn above to amplify the incoming acoustic signal. The horn provides a broad amplification of the incoming acoustic signal while the ...

Development of a Package for a Triaxial High-G Accelerometer Optimized for High Signal Fidelity

R. Langkemper [1], R. Külls [1], J. Wilde [2], S. Nau [1], S. Schopferer [1],
[1] Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI, Freiburg, Germany
[2] Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik, Freiburg, Germany

Acceleration is an important quantity to be measured in high-speed dynamics. A new piezoresistive sensor for the measurement of high-amplitude, short-duration transient accelerations of up to 100,000 g has been developed at the Fraunhofer EMI. Its figure of merit (sensitivity x resonance frequency²) is about one order of magnitude higher than that of comparable state-of-the-art sensors. ...

Modeling of Near-Field Ultrasonic Levitation: Resolving Viscous and Acoustic Effects

I .F. Melikhov [1], A. S. Amosov [1], S. A. Chivilikhin [2],
[1] Corning Scientific Center, Saint Petersburg, Russia
[2] ITMO University, Saint Petersburg, Russia

Ultrasonic levitation is a novel technology for contactless handing of various objects. It is already used in various manufacturing processes where it is important to keep untouched surface. In this paper we introduce a model of so-called near-field ultrasonic levitation which allows flying heights of the hundred-micron order. Our model computes air flow in the gap between a vibration source and ...

Lamb Waves in Fluid-Loaded Plates

T. Kaufmann[1], F. Kassubek[1], D. Pape [1], M. Lenner[1]
[1]ABB Corporate Research, Baden-Dättwil, Switzerland

Lamb waves are elastic waves propagating in free solid plates. In the case of plates loaded with a fluid, the equations describing these waves have to be modified to include the effects of the fluid. In our work we have tackled this problem using COMSOL Multiphysics®. We have used the two-dimensional plane strain model of the solid mechanics interface to calculate the eigenmodes of the coupled ...

Analysis of High-Frequency Thermoacoustic Instabilities in Lean, Premixed Gas Turbine Combustors

F. Berger [1], T. Hummel [1], P. Romero [1], M. Schulze [1], B. Schuermans [2], T. Sattelmayer [1],
[1] Lehrstuhl für Thermodynamik, TU München, Germany
[2] GE Power, Switzerland

Modern gas turbine systems for power generation are prone develop so-called thermosacoustic instabilities in the combustion chamber. Physically, these instabilities emerge as large amplitude pressure oscillations within the combustor, which are caused by constructive feedback interactions between the flame and the combustor's natural acoustic modes. The oscillations disturb the combustion ...