Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.
COMSOL News Magazine 2017

Modeling the Electroplating of Hexavalent Chromium

N. Obaid[1], R. Sivakumaran[1], J. Lui[1], A. Okunade[1]
[1]University of Waterloo, Waterloo, ON, Canada

This project modeled an industrial chromium plating process for automotive components. The process was modeled via the COMSOL Multiphysics® Electrodeposition Module. The simulation examined the effect of solution conductivity, electrode spacing, and anode height utilizing a factorial design approach. A sensitivity analysis was used to study the effect of these variables on the thickness value at ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode ...

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. The model is applied in two regimes of the process – pore formation and electropolishing – by definition of current density dependent functions of porosity and dissolution valence based on experimental results. As found also experimentally, ...

Two-Dimensional Simulation of All-Solid-State Lithium-ion Batteries

L. Tong [1],
[1] Keisoku Engineering System Co., Ltd., Chiyoda-ku, Tokyo, Japan

There is great interest in developing all-solid-state lithium-ion batteries. They are ideal micro-power sources for many applications in portable electronic devices, electric vehicles and biomedical engineering. It is known that all-solid-state lithium-ion batteries are often fabricated by thin film methods, with thicknesses in the range of a few micrometers. Since porous electrodes are not ...

Large and High Power Cylindrical Batteries - Analysis of the Battery Pack Temperature Distributions Using the COMSOL Multiphysics® and MATLAB® Simulation Softwares - new

O. Capron[1], A. Samba[1], N. Omar[1], H. Gualous[2], P. Van den Bossche[1], J. Van Mierlo[1]
[1]MOBI - Mobility, Logistics and Automotive Technology Research Centre, VUB - Vrije Universiteit Brussel, Brussels, Belgium
[2]Laboratoire LUSAC, Université de Caen Basse Normandie, Cherbourg-Octeville, France

The temperature distributions inside two packs (in-line and staggered) made of large cylindrical lithium iron phosphate cells (of 18 Ah nominal capacity) are analysed in this paper during a 90 A constant discharge current. The analysis of the battery packs temperature distributions is based on the results obtained with a two-dimensional modelling approach. For both packs, the simulations ...

Modeling an Ejector for Hydrogen Recirculation in a PEM Fuel Cell

X. Corbella [1], R. Torres [2], J. Grau [2], M. Allué [3],
[1] Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (Universitat Politècnica de Catalunya), Barcelona, Spain
[2] Fluid Mechanics Department (Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona - Universitat Politècnica de Catalunya), Barcelona, Spain
[3] Institut de Robòtica I Informàtica Industrial (Consejo Superior de Investigaciones Científicas – Universitat Politècnica de Catalunya), Barcelona, Spain

PEM Fuel Cells’ durability and performance can be increased using an ejector based hydrogen recirculation system. In this work, a CFD model has been implemented to simulate the flow within an ejector used to recirculate hydrogen in PEM Fuel Cell systems. The model has been validated experimentally and has been used to design and manufacture an ejector that will be implemented in a fuel cell test ...

Parameter Estimation in a Single Particle Model Using COMSOL Multiphysics® Software and MATLAB® Optimization

B. Rajabloo [1], M. Désilets [1], Y. Choquette [2],
[1] Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, QC, Canada
[2] Institut de recherche d’Hydro-Québec, Varennes, QC, Canada

When it comes to study the behavior of the secondary batteries, physics-based models are more representative of the real behaviour than equivalent circuit models, especially for the estimation of the life and capacity fading. On the other hand, the complexity and computational cost of sophisticated physics-based models like pseudo two-dimensional (P2D) models justify the use of more simplified ...