Quick Search

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Simulating Organogenesis in COMSOL Multiphysics®: Cell-based Signaling Models

D. Iber[1], J. Vollmer[1], D. Menshykau[1]
[1]Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

Most models of biological pattern formation are simulated on continuous domains even though cells are discrete objects that provide internal boundaries to the diffusion of regulatory components. In our previous papers on simulating organogenesis in COMSOL Multiphysics® (Germann et al COMSOL Multiphysics® Conf Procedings 2011; Menshykau and Iber, COMSOL Multiphysics® Conf Proceedings 2012) we ...

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging infants in adult coils. Two birdcage-type coils were loaded by a tissue model and their B1+ homogeneities ...

Solving Calcium Spatiotemporal Diffusion Using COMSOL Multiphysics® Software - new

L. Garber[1,2], G. S. B. Williams[2], W. J. Lederer[2]
[1]Fischell Department of Bioengineering, University of Maryland, Baltimore, MD, USA
[2]Center for Biomedical Engineering & Technology, University of Maryland, Baltimore, MD, USA

This project involves a simplified biological problem that was used to test the potential of COMSOL Multiphysics® software for cardiac myocyte spatial modeling. We made several assumptions to simplify the biological complexity and to highlight the geometrical structures (i.e., lack of sarcoplasmic reticulum, lack of contractile apparatus). We explored the role of the t-tubular network on ...

Detection of E.coli Cell using Capacitance Modulation

A.K. Dwivedi, R.M. Patrikar, R.B. Deshmukh, and G. Pendharkar
Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Testing and verification is very important to increase reliability of a system. In water analysis its purity is verified using different test methods. Biosensors are very useful to detect the microorganisms present in water. This paper presents a method to detect E.coli bacteria in water depending upon the capacitance modulation in the presence and absence of E.coli cell, which is simulated in ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

Simulating Organogenesis in COMSOL

D. Iber, D. Menshykau, and P. Germann
ETH Zürich
Department of Biosystems Science and Engineering
Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. Computational models can help to integrate available knowledge and to better understand the underlying regulatory logic. We are currently studying mechanistic models for the development of limbs, lungs, kidneys, and bone. We have tested a number of alternative methods to solve our spatio-temporal ...

Model of a Microfluidic Thermal Cycler Activated by Means of Electro-Osmotic Micro-Pumps

E. Bianchi[1][2], M.F. Bello[1], I. Critelli[1], G. Dubini[1]
[1]Politecnico di Milano, LaBS, Laboratory of Biological Structure Mechanics, Milano, Italy
[2]Swiss Federal Institute of Technology (EPFL), Laboratory of Life Sciences Electronics - Swiss Up Chair, Lausanne, Switzerland

A microfluidic thermal cycler for Polymerase Chain Reaction (PCR) has been modeled. A microliter sample is driven along the microchannel by a flow generated by means of electroosmotic micropumps, activated in sequence. Several multichannel pumps configurations have been separately modeled and the efficiency of each device has been evaluated with regard to the effective flowrate and the back ...

A Simplified Numerical Model for Simulating Sliding Door and Surgical Staff Movement in an Operating Theater

C. Balocco[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by different sliding door conditions combined with crossing persons and persons with a stretcher crossing is provided. ...

Particle Tracing: Analysis of Airborne Infection Risks in Operating Theatres

P. Apell[1], S. Hjalmarsson[1], T. Lindberg[1], I. Wernström[1], Y. Tarakonov[1], A. Erichsen Andersson[2], M. Karlsteen[1]
[1]Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
[2]Sahlgrenska University Hospital, Department of Anesthesia, Surgery and Intensive Care, Göteborg, Sweden

Patients undergoing surgery are sensitive to infections. The operation staff may spread 10^4 particles per person per minute, of which ten percent are presumed bacteria-carrying. We visualize the influence of the personnel on the air and particle flows for the two most common ventilation systems in Swedish hospitals using Comsol Multiphysics with particle tracing.. The Laminar Air ...

Wireless Power and Communications for Implantable Biosensors

C. Romero[1], M. Mujeeb-U-Rahman[1]
[1]California Institute of Technology, Pasadena, CA, USA

Implantable biosensors have the potential to revolutionize the healthcare industry by allowing patients and their health care providers to continuously monitor blood pH levels, pCO2, proteins, metabolites, and a wide variety of other biomolecules. These devices need to operate completely wirelessly to be used for long term monitoring. Metal coils are attractive candidates for wireless power ...