Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Downscale Finite Element Modeling of Aortic Valve Leaflets for In-Situ Estimation of Cell Level Mechanics

R. Buchanan[1], M. Sacks[1]
[1]Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas, Austin, TX, USA

As in all tissues, mechanical forces in the aortic valve (AV) modulate the constituent cell population’s physiology and biosynthetic activity. While advances have been made toward the understanding of this complex multi-scale relationship, the specific role that and extracellular matrix (ECM) coupling plays on the mechanical response of the AV interstitial cell (AVIC) is poorly understood. The ...

Simulating Organogenesis in COMSOL Multiphysics®: Cell-based Signaling Models

D. Iber[1], J. Vollmer[1], D. Menshykau[1]
[1]Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

Most models of biological pattern formation are simulated on continuous domains even though cells are discrete objects that provide internal boundaries to the diffusion of regulatory components. In our previous papers on simulating organogenesis in COMSOL Multiphysics® (Germann et al COMSOL Multiphysics® Conf Procedings 2011; Menshykau and Iber, COMSOL Multiphysics® Conf Proceedings 2012) we ...

Multiscale Model of Human Pathogen Growth on Fresh Produce - new

A. Warning[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Predictive food microbiology currently first requires experimental data for growth on fresh produce and then fitting an empirical or semi-empirical model to the data, making extrapolation to other conditions (temperature, type of produce) difficult. Herein, we develop a mechanistic model for the growth of human pathogenic bacteria (Escherichia coli O157:H7 and Salmonella spp.) on spinach using ...

Design and Strain Analysis of Artificial Femoral Head and Stem

N. M. Sundaram[1], M. Sneha[1], A. Kandaswamy[1], R. Nithya[2]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India
[2]Dr. N.G.P. Institute of Technology, Coimbatore, Tamil Nadu, India

The majority of elderly patients are subjected to hip bone replacement due to dislocation of bone, mechanical failure and infection. The life time of the implant varies from patient to patient depending on their daily physical activity. Once the implant fails, re-operation of hip bone replacement is performed. In United States, there are approximately 18 revision hip replacements performed for ...

Control-Release Anesthetics to Enable an Integrated Anesthetic-MSC Therapeutic

T. Maguire [1,2], M. Davis [1], I. Marrero-Berrios [1], C. Zhu [1], C. Gaughan [2], J. Weinberg [3], D. Manchikalapati [3], J. SchianodiCola [3], R. S. Schloss [1], J. Yarmush [3], M. Yarmush [1],
[1] Rutgers University, New Brunswick, NJ, USA
[2] BeauRidge Pharmaceuticals, New York, NY, USA
[3] Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA

Introduction: While general anesthetics control pain via consciousness regulation, local anesthetics (LAs) act by decreasing sensation in the area of administration by blocking nerve transmission to pain centers. Perioperative intra-articular administration of LAs is a commonly employed procedure in orthopedic procedures to minimize patient surgical and post-surgical pain. LAs are also co ...

Numerical Simulations Demonstrate Safe Vitrification and Warming of Embryos Using the Rapid-i™ Device

B.O.J. Johansson[1][2], Y.A. Tarakanov[1], H.J. Lehmann[2], and S.P. Apell[1]

[1]Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
[2]Vitrolife Sweden AB, Västra Frölunda, Sweden

During cryopreservation of human embryos, ice crystal formation in the embryos or in surrounding media may cause cryodamage to them and can be lethal. A strategy to avoid this is the vitrification procedure when the embryo and the surrounding medium undergo the transition to glassy state rather than a crystalline one during cooling. Similarly, recrystallization in the embryo or the medium must ...

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

Simulation of a Magnetic Induction Method for Determining Passive Electrical Property Changes of Human Trunk Due to Vital Activities

H. Mahdavi[1], J. Rosell Ferrer[1]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain

The human body consists of many different types of tissues each with specific passive electrical properties. Vital activities lead to a characteristic change of these properties and geometrical changes. Magnetic induction is a non-contact method which can be used to determine these changes. The method is based on the creation of a primary magnetic field that will produce eddy currents in the ...

Simulations of Heat and Mass Transport During Biomass Conversion Processes Using 3D Biomass Particle Models with Realistic Morphology and Resolved Microstructure - new

P. Ciesielski[1], M. Crowley[1], L. Thompson[1], B. Donohoe[1], D. Robichaud[2], A. Sanders[3], M. Nimlos[2], T. Foust[2]
[1]Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
[2]National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
[3]Quantum Electronics & Photonics Division, National Institute of Standards & Technology, Boulder, CO, USA

Predictive simulations of biomass conversion processes will improve their technical performance and reduce economic uncertainty surrounding industrialization of biofuels production. The majority of present conversion simulations treat the biomass feedstock with simplifying assumptions that neglect important characteristics that are unique to biomass particles. These characteristics, including ...