Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

Kristian Dreij[1], Qasim Ali Chaudhry[2], Bengt Jernström[1], Ralf Morgenstern[1], and Michael Hanke[2]
[1]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
[2]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation ...

Microwave Exposure System for In Vitro and In Vivo Studies - new

C. Nadovich[1, 2], W. D. Jemison[2], J. A. Stoute[3], C. Spadafora[4]
[1]Lafayette College, Easton, PA, USA
[2]Clarkson University, Potsdam, NY, USA
[3]Pennsylvania State University, Hershey, PA, USA
[4]INDICASAT AIP, Ciudad del Saber, Panama

A computer controlled microwave exposure system and specialized applicators were constructed for the purpose of facilitating accurate observations of microwave radiation effects on uninfected and infected biological tissue in vitro and in vivo under different electromagnetic modalities and exposure configuration. To address diverse requirements, three different applicators were developed: a ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

Advancing Regulatory Science through Integrative Engineering with COMSOL Multiphysics® Software Modeling

G. Zhang [1]
[1] Department of Bioengineering, Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

The US Food and Drug Administration (FDA) faces significant challenges in its regulatory approval processes due to a lack of relevant science, and many practices are limited by laws enacted in the previous century [1]. Therefore, in recent years, the FDA has identified the need for advancements in regulatory science and innovation. In a broader sense, advancing regulatory science is not just ...

Simulation of CMOS Compatible Sensor Structures for Dielectrophoretic Biomolecule Immobilization

H. Matbaechi Ettehad [1], S. Guha [1], C. Wenger [1],
[1] IHP, Frankfurt (Oder), Brandenburg, Germany

The aim of this paper is to optimize with COMSOL Multiphysics® simulation, the design geometry of a near field biosensor which could be used for dielectrophoretic (DEP) immobilization and simultaneous sensing of biomolecules of the order of nanometers to micrometers. COMSOL Multiphysics® was utilized with its various potential modules such as AC/DC, CFD and Particle Tracing Modules. DEP ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Simulation and Design of a Microfluidic Respirometer for Semi-Continuous Amperometric Short Time Biochemical Oxygen Demand (BODST) Analysis

F.J. del Campo[1], A. Torrents[1], J. Mas[2], F.X. Muñoz[1]
[1]Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
[2]Departement de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to parameterize and optimize aspects such as height and length of the channels, materials and thickness, flow and oxygen ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a pregnant female torso which accounts for presence of amniotic liquid and calculate current density ...

An Examination of Wall Shear Stresses in Curved Arterial Vessels Using Bioresorbable Stents

D. W. Pepper [1], S. Pirbastami [1],
[1] University of Nevada - Las Vegas, Las Vegas, NV, USA

Bioresorbable stents are providing temporary mechanical support to keep a narrowed or blocked coronary artery open and restore the blood flow and will be gradually degraded and resorbed after the healing and remodeling of arterial wall. This new generation of stents has lower rates of restenosis and in-stent thrombosis in comparison with permanently bare-metal stents. Since this new generation ...