Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Simulation of the Acoustic Environment for the Manufacture of Graded Porosity Materials by Sonication

C. Torres-Sanchez, and J. R. Corney
University of Strathclyde, United Kingdom

Many materials require functionally graded cellular microstructures whose porosity is engineered to meet specific requirements of diverse applications. It has been shown in previous work that the bubble growth rate of a polymeric foam can be influenced by the surrounding acoustic environment and, once solidified, produce a solid of graded porosity. Motivated by the desire to create a flexible ...

Pseudo-3D Multiphysics Simulation of a Hydride Vapor Phase Epitaxy Reactor

M. Hackert-Oschätzchen[1], M. Penzel[1], P. Plänitz[2], A. Schubert[1][3]
[1]Chemnitz University of Technology, Chemnitz, Germany
[2]GWT-TUD, Dresden, Germany
[3]Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany

Gallium nitride (GaN) and its related nitride alloys with special physical properties are in technical areas of high interest. The growing of gallium nitride boules on non-native sapphire or silicon carbide requires complicated mechanisms of defect reduction in the lattice structure. Thus the production of gallium nitride substrates is a challenge. Hydride Vapor Phase Epitaxy (HVPE) is a ...

Modelling of Reactive Non-Isothermal Mixture Flow and its Simulation in COMSOL Multiphysics® Software - new

V. Orava[1,2], O. Soucek[1], P. Cedula[2]
[1]Charles University in Prague, Prague, Czech Republic
[2]Zurich University of Applied Sciences, Winterthur, Switzerland

I introduce a model of fluidized reactor which, in presence of heterogeneous platinum-based catalyst, decomposes liquid formic acid producing gaseous mixture of carbon dioxide and hydrogen as the product. I treat the physical system as a (Class II) mixture of four constituents - namely formic acid (FA), Platinum micro-pellets (Pt), carbon dioxide (CO_2) and hydrogen (H_2) - which can be, without ...

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and mass transport phenomena in metal hydride vessels. The model has been experimentally validated showing a good ...

Study of Electrochemically Generated Two-Phase Flows

J. Schillings [1], O. Doche [2], J. Deseure [1],
[1] LEPMI, Grenoble, France
[2] SIMAP, Grenoble, France

The dependency of electrochemical processes performances on mass transfer is well-known. Electrolyte flow in the vicinity of electrodes surface can enhance reactions due to increased mass transfer. This flow can be generated by the production of a gaseous phase, leading to a natural bubble-driven convection flow. As a drawback, gas bubbles also modify electrodes active surface and the ...

Mathematical Formulation of a PEM Fuel Cell Model

E. Robalinho [1], E. F. Cunha [2], M. Linardi [2], E. I. Santiago [2],
[1] Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN, São Paulo, SP, Brazil; and Instituto Federal do Rio Grande do Sul - IFRS, Porto Alegre, RS, Brazil
[2] Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN, São Paulo, SP, Brazil

The idea of a friendly implementation of a mathematical formulation using specialist software was performed with the support of COMSOL Multiphysics® software with Chemical Reaction Engineering and Batteries & Fuel Cell Modules. The real problem of a Proton Exchange Membrane – PEM fuel cell modeling involves different scales, multiple variables and processes, coupling of solvers and experimental ...

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

H. Ishimori[1], K. Endo[2], H. Sakanakura[2], M. Yamada[2], M. Osako[2]
[1]Ritsumeikan University, Kusatsu, Shiga, Japan
[2]National Institute for Environmental Studies, Tsukuba, Ibaraki Prefecture, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Multiscale Model of Human Pathogen Growth on Fresh Produce - new

A. Warning[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Predictive food microbiology currently first requires experimental data for growth on fresh produce and then fitting an empirical or semi-empirical model to the data, making extrapolation to other conditions (temperature, type of produce) difficult. Herein, we develop a mechanistic model for the growth of human pathogenic bacteria (Escherichia coli O157:H7 and Salmonella spp.) on spinach using ...

Virtual Functional Product Development of a µ-Methane Steam Reformer

T. J. Kazdal [1], M. J. Hampe [1],
[1] Technische Universität Darmstadt, Darmstadt, Germany

A micro steam methane reformer is a complex product consisting of multiple units. For the virtual functional product development it is necessary to validate these sub models separately. Therefore a reactor was designed to analyse kinetics of chemical reactions. The reactor design is based on a simulation geometry and the boundary conditions of the simulation were recreated in the experimental ...

Multi-Dimensional Adsorption Model of CO2/H2O Sorbent Bed

C. Gomez [1], R. F. Coker [1], J. Knox [1], G. Schunk [1]
[1] NASA MSFC, Huntsville, AL, USA

The primary interest of the VC (Vacuum Characterization) test is to experimentally characterize the adsorption and vacuum desorption of CO2 and water vapor of a pelletized sorbent bed in a large diameter column. The VC test article is shown in Figures 1 and 2. The aluminum canister is 3” in diameter and approximately 8” long allowing for variable sorbent bed loads from 1” to 6” in length. A ...