Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Claus Process Reactor Simulation

J. Plawsky[1],
[1]Rensselaer Polytechnic Institute, Troy, NY, USA

A model was developed to simulate the reaction, concentration field, flow field, and temperature distribution inside a Claus reactor for converting hydrogen sulfide to sulfur. The model considered two ideal reactors, a continuous stirred tank reactor and a plug flow reactor. As expected, two ideal reactors showed much different behaviors in terms of reactant conversion and operating ...

COMSOL Multiphysics® Simulations of Graphene Chemical Vapor Deposition (CVD) Growth - new

K. M. Al-Shurman[1], H. Naseem[1]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition (CVD) is a promising effective method for synthesis of graphene films. CVD graphene film is obtained from hydrocarbon species such as CH4 through complex catalytic chemical reactions on the surface of the catalyst. Therefore, studying the catalytic reaction kinetics is essential process for understanding the thermal decomposition rate of methane on catalyst surface as ...

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

A Wall-Cooled Fixed-Bed Reactor Model for Gas-Phase Fischer-Tropsch Synthesis

A. Nanduri [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

In the early 1920’s, Gas-To-Liquids (GTL) and Coal-To-Liquids (CTL) technologies were developed to account for the depleting crude oil resources [1]. During this period, Franz Fischer and Hans Tropsch developed a process to convert synthesis gas (syn gas), derived from coal gasification, to a wide range of high value-added products. This process later came to be known as Fischer-Tropsch (F-T) ...

Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas

H. Bakhtiary, F. Hayer, H. Venvik, A. Holmen
Norwegian University of Science and Technology Trondheim

Methanol synthesis is a typical reaction in heterogeneous catalysis. In this work, we have studied a laboratory fixed-bed reactor packed with a Cu/Zn/Al2O3 catalyst in both adiabatic and isothermal tubular operational modes. A methanol synthesis kinetic model was implemented in COMSOL Reaction Engineering Lab. Both 1D and 2D pseudo-homogeneous dispersion models were applied to describe the mass ...

Diffusion Modeling in TGA in Context of CO2 Gasification of Char

G. Samdani[1], S. Mahajani[1], A. Ganesh[1], P. Aghalayam[2], R. K. Sapru[3], D. K. Mathur[3]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
[2]Indian Institute of Technology Madras, Chennai, India
[3]UCG Group, IRS, ONGC, Chankheda, Ahmadabad

The Thermo- Gravimetric Apparatus (TGA) is often used for kinetics determination. In TGA setup, gasification reaction may be limited by the reach (diffusion) of the gasification agent to the internal surfaces of the char particles. In addition to this, after some time, ash is formed between the bulk of the gas and the upper surface of char. The present modeling exercise is aimed at examining the ...

Diffusion and Reaction in Fe-Based Catalyst for Fischer-Tropsch Synthesis Using Micro Kinetic Rate Expressions - new

A. Nanduri[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for FTS processes. The scale-up of MTFBR is complicated by the ...

COMSOL Multiphysics® Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

A. G. Dixon [1], D. S. Polcari [1], A. D. Stolo [1], M. Tomida [1],
[1] Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a specified flow rate. Effects of different catalysts, screen sizes and flow direction were simulated. Factors ...

Analysis of Mash Tun Flow: Recommendations for Home Brewers - new

E. Gutierrez-Miravete[1], C. J. Walsh[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

The major steps in the beer making process are simple and with some skill, rather good brew can be produced using a common picnic cooler. First, grain (usually barley) is wetted and allowed to partially germinate before dried in a kiln (malting) Next, during mashing in a mash tun reactyor the malted grains are soaked in hot water in to extract the fermentable sugars and then rinsed slowly to ...

Simulation of Gas/Liquid Membrane Contactor with COMSOL Multiphysics®

N. Ghasem[1], M. Al-Marzouqi[1], N. Abdul Rahim[1]
[1]UAE University, Al-Ain, United Arab Emirates

A comprehensive mathematical model that includes mass and heat transfer was developed for the transport of gas mixture of carbon dioxide and methane through hollow fiber membrane (HFM) contactor. COMSOL Multiphysics® was used in solving the set of partial, ordinary and algebraic equations. The model was based on "non-wetted mode" in which the gas mixture filled the membrane pores for ...