Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Analysis and Optimization of Dragonfly Wing Using COMSOL Multiphysics® Software

A. Kumar [1], C. Kaur [1], S. S. Padhee [2],
[1] PEC University of Technology, Chandigarh, India
[2] IIT Ropar, Punjab, India

This paper explores the complexities of a dragonfly's flapping wing motion. It includes the literature as well as analytical results using simulations done in COMSOL Multiphysics® software. The study depicts the Fluid-Structure Interaction of the 2D wing (airfoil) with air, governed by Naiver-Stokes equations. The wing follows mathematical functions and is given motion similar to dragonfly's ...

CFD Analysis of a Heat Exchanger for an Electric Machine

A. Curci [1], D. Falchi [2], G. Secondo [1],
[1] ABB S.p.A. Italy
[2] Università degli studi di Pavia, Italy

In recent years the thermal behavior of electric machines is an attractive research topic. Due to the complexity of the problem, several approaches that exploit FEM analysis have been developed and presented in literature. In this research a 3D thermo-fluid dynamic simulation of an electric machine equipped with rubber belts directly applied on its shaft has been performed through COMSOL ...

Steady and Unsteady Computational Results of Full Two Dimensional Governing Equations for Annular Internal Condensing Flows

R. Naik[1], S. Mitra[1], A. Narain[1], N. Shankar[1]
[1]Michigan Technological University, Houghton, MI, USA

This paper presents steady and unsteady computational results obtained from numerical solutions of the full two-dimensional governing equations for annular internal condensing flows in a channel. This is achieved by tracking the “sharp” interface while solving the flow fields using COMSOL Multiphysics® and MATLAB®. The unsteady wave simulation capability is used to predict heat-transfer rates ...

Large and High Power Cylindrical Batteries - Analysis of the Battery Pack Temperature Distributions Using the COMSOL Multiphysics® and MATLAB® Simulation Softwares - new

O. Capron[1], A. Samba[1], N. Omar[1], H. Gualous[2], P. Van den Bossche[1], J. Van Mierlo[1]
[1]MOBI - Mobility, Logistics and Automotive Technology Research Centre, VUB - Vrije Universiteit Brussel, Brussels, Belgium
[2]Laboratoire LUSAC, Université de Caen Basse Normandie, Cherbourg-Octeville, France

The temperature distributions inside two packs (in-line and staggered) made of large cylindrical lithium iron phosphate cells (of 18 Ah nominal capacity) are analysed in this paper during a 90 A constant discharge current. The analysis of the battery packs temperature distributions is based on the results obtained with a two-dimensional modelling approach. For both packs, the simulations ...

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment while holes pull cells toward the surface and increase residence time on the surface increasing attachment rate.

COMSOL Multiphysics® Software Simulation Application for Thermoplastics Viscosity Measurement

Q. Guo [1], S. Ahmed [2],
[1] EHC Canada, Inc., Oshawa, ON, Canada
[2] University of Ontario Institute of Technology, Oshawa, ON, Canada

Present study discusses a new method of how to apply numerical simulation in COMSOL Multiphysics® software to improve the accuracy of polymer melts viscosity measurements. The main emphasis is placed on evaluating the effects of entrance and exit geometry of a capillary rheometer on viscosity measurement. By combining experimental and COMSOL® simulation results, an accurate Bagley correction ...

A Flow and Transport Model of Catalytic Multi-Pump Systems with Parametric Dependencies

A. Sen [1], D. Myers [1], A. Altemose [1],
[1] Department of Chemistry, Pennsylvania State University, University Park, PA, USA

This poster studies catalytic micropumps and their ability to induce fluid flow on the microscale. The goal of the study is to design a long-distance, directed convective loop. An array of catalytic micropumps was constructed in the domain, comprised of two distinct catalysts in an alternating pattern with a uniform concentration of their respective reagents in the surrounding geometry. Two ...

Numerical Simulation of the Effect of Inlet Design on Thermal Storage Tank Performance Using COMSOL Multiphysics®

W. Yaïci[1], M. Ghorab[1], E. Entchev[1]
[1]Natural Resources Canada, CanmetENERGY, Ottawa, ON, Canada

This study presented the results of 3D unsteady CFD simulations to investigate the influence of adding a flat baffle plate at the entrance during the discharging operation on the flow behaviour, thermal stratification, and performance of a hot water storage tank installed in solar thermal energy systems. The CFD results showed that the plate modified the flow field close to the inlet jet, ...

Analysis of Mash Tun Flow: Recommendations for Home Brewers - new

E. Gutierrez-Miravete[1], C. J. Walsh[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

The major steps in the beer making process are simple and with some skill, rather good brew can be produced using a common picnic cooler. First, grain (usually barley) is wetted and allowed to partially germinate before dried in a kiln (malting) Next, during mashing in a mash tun reactyor the malted grains are soaked in hot water in to extract the fermentable sugars and then rinsed slowly to ...

Simulation of a Nozzle in a Borehole

E. Holzbecher [1], F. Sun [2],
[1] German University of Technology in Oman, Muscat, Oman, Germany
[2] Georg-August-Universität, Göttingen, Germany

In boreholes nozzles have to be found advantageous to increase the infiltration rate of water into the subsurface ground. Studies and practice in the field shows that the infiltration of water into permeable aquifers can be improved, if the flow in the borehole is modified. Due to the nozzle the flow regime turns from linear to turbulent. CFD studies help to understand the physics of the ...