Quick Search

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Using Computational Fluid-Dynamics (CFD) for the Evaluation of Tomato Puree Pasteurization: Effect of Orientation of Bottle - new

A. R. Lespinard[1, 2], R. H. Mascheroni[1, 2]
[1]Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina
[2]Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina

Determination of the temperature in liquid foods may be derived by measurements or by modeling. However, the placement of thermocouple probes to record temperature in the container disturbs the flow patterns. For this purpose, Computational fluid-dynamics (CFD) offers a powerful tool for predictions of the transient temperature and velocity profiles during natural convection heating of liquid ...

Numerical Modeling and Performance Optimization Study of a Dehumidification Process in Nuclear Waste Storage

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

One of the main parameters to consider during the nuclear waste storage design phase is the drum corrosion risk. The humid-air corrosion models available in literature predict that, for carbon steel, the phenomena start to become appreciable for relative humidity (RH) values close to 65%. In general, the corrosion rate increases exponentially with relative humidity above the RH threshold. To ...

Simulation of Gravity-Driven Flow Through a Microfluidic Device on a Rocker Platform - new

B. Srinivasan[1], J. Hickman[1], M. Shuler[2]
[1]University of Central Florida, Orlando, FL, USA
[2]Cornell University, Ithaca, NY, USA

A micropump delivers fluid between different components of a microfluidic device in a controlled manner. The elimination of micropump can reduce the design complexity, simplify fabrication, shrink the device footprint and decrease the set-up time required for the operation of the microfluidic device. One such pumpless microfluidic device for body-on-a-chip application for drug toxicity studies ...

Modeling of Wettability Alteration during Spontaneous Imbibition of Mutually Soluble Solvents in Mixed Wet Fractured Reservoirs - new

M. Chahardowli[1], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands

Mutually-soluble solvents can enhance oil recovery both in completely and partially water wet fractured reservoirs. When a strongly or partially water-wet matrix is surrounded by an immiscible wetting phase in the fracture, spontaneous imbibition is the most important production mechanism. Initially, the solvent moves with the imbibing brine into the core. However, upon contact with oil, as the ...

The Microgeometry of Pressure Seals - new

R. P. Ruby[1], G. Kulkarni[2], U. Kanade[1]
[1]Noumenon Multiphysics Pvt. Ltd., Pune, Maharashtra, India
[2]Oneirix Engineering Laboratories Pvt. Ltd., Pune, Maharashtra, India

Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of such surfaces. This paper presents strong computational evidence that the microgeometry of such surfaces depends ...

Depth-Averaged Modeling of Groundwater Flow and Transport

P. Kitanidis
Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

In many groundwater studies, the areal extent of an aquifer is much larger than its thickness so that flow and transport take place primarily in horizontal directions. Thus, the most common type of modeling in practical applications is two-dimensional involving vertically averaged dependent variables, primarily hydraulic head and solute concentration. This is a tutorial on depth-averaged ...

Numerical Investigation of Swirl Flow in Curved Tube with Various Curvature Ratio

A. Kadyirov[1]
[1]Research Center for Power Engineering Problems of the Russian Academy of Sciences, Kazan, Russia

The influences of curvature effects and swirl intensities for Non-Newtonian viscous fluid flow in a curved tube have been numerically investigated by using COMSOL Multiphysics®. The twisted tape, which are located directly in front of the curved part, are used as swirl flow generators. The tape is twisted until it reaches an angle of 90 degrees and turns right. Swirling flow, getting into the ...

Investigation of Blade Profiles of Vertical Axis Wind Turbine by Numerical Simulation

S. Yoshioka[1]
[1]Ritsumeikan University, Kusatsu City, Shiga, Japan

There are two types of vertical axis wind turbine, drag-type and lift-type. Drag type wind turbine can rotate in low speed wind condition, although its rotation speed is low. Lift type wind turbine can rotate at higher speed, although it works only in high speed wind condition. This study investigates new blade profile that realize rotation in low wind speed condition and higher rotation speed by ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...