Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, ...

Two-Phase Flow and Multiphysics Simulations in COMSOL

Dr. Singh has been working at the Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai since 2000. He has a Ph.D. from the Department of Chemical Engineering, IIT Bombay. He is a recipient of the Homi Bhabha Medal of Bhabha Atomic Research Centre in year 2000, Young Engineer Award of the Department of Atomic Energy in year 2008 and Award for Excellence in Thesis Work at IIT ...

Modeling two-phase flow in strongly heterogeneous porous media

Z. Huang
China University of Petroleum, Research Center for Oil & Gas Flow in Reservoir, Qingdao City, China

Modeling Two-phase flow through strongly heterogeneous porous media is of importance in many disciplines including petroleum industry, hydrology etc. There are, however, still some challenges in numerical simulation of such flow problems especially the flows in fractured porous media and fractured vuggy porous media. The aim of this report is to implement in COMSOL Multiphysics a two-phase fluid ...

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

E. Kaufman[1], and E. Gutierrez-Miravete[2]

[1]Pratt and Whitney, East Hartford, CT, USA
[2]Rensselaer at Hartford, Hartford, CT, USA

As gas turbine temperatures and component life requirements continue to rise, it becomes increasingly important to have a good understanding of the operating temperatures of their components. The objective of this study was to explorate whether a Hiemenz flow approximation based on measured static pressures near an airfoil leading edge can provide a good estimate of the leading edge heat transfer ...

Geometric Modeling and Numerical Simulation of Airfoil Shapes Using Integrated MATLAB® and COMSOL Multiphysics

A. Safari[1], H. Lemu G.[1], H. Severson[1]
[1]University of Stavanger, Stavanger, Norway

This paper proposes a framework for an efficient integration between geometric modeling program and analysis tool for a coming automated aerodynamic design optimization mission. This demand can be addressed by using both in-house codes and commercial software which have the good ability of live-link and efficient integration. In this study, the mathematical modeling of a turbomachinery airfoil ...

Modeling of a Magnetocaloric System for Electric Vehicles

A. Noume[1], C. Vasile[1], M. Risser[1]
[1]National Institute of Applied Science (INSA), Strasbourg, France

In automotive industry, regardless the type of engine we use, heating and air-conditioning is responsible for the highest energy consumption among all the auxiliary systems all over the year. For conventional vehicles with thermal engines, the heating of the internal space is easy obtainable because of the heat waste from the engine. For the electric vehicles, as the energy is delivered by the ...

Modelling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds using COMSOL Multiphysics

S. Sachdev[1], S. Pareek[1], B. Mahadevan[1], A. Deshpande[1]
[1]Department of Chemical Engineering, BITS Pilani Goa Campus, Zuarinagar, Goa, India

Computational fluid dynamics has emerged as an advanced tool for studying detailed behavior of fluid flow and heat transfer characteristics in many chemical engineering applications like packed beds. Packed beds play an important role in various chemical industries. Hence understanding the fluid flow behavior and temperature variation in different sections of packed bed is essential. Geometric ...

Heat Transfer Modeling of Steam Methane Reforming

E. Carcadea[1], M. Varlam[1], I. Stefanescu[1]
[1]National Research Institute for Isotopic & Cryogenic Technologies, Rm.Vâlcea, Romania

Steam methane reforming is a widely studied process because of its importance for hydrogen production. A two-dimensional membrane-reactor model was developed to investigate the steam-methane reforming reactions. The use of membrane as membrane-reactor separator offer us few advantages because it help in continuously removing the hydrogen from the reaction zone, shifting the chemical equilibrium ...

Fully Coupled Thermo-Hydro-Mechanical Modeling by COMSOL Multiphysics, with Applications in Reservoir Geomechanical Characterization

T. Freeman[1], R. Chalaturnyk[1], and I. Bogdanov[2]
[1]University of Alberta, Edmonton, AB, Canada
[2]Centre Huile Lourde Ouvert et Expérimental (CHLOE), France

Because of the complex nature of geomaterials and presence of solid and fluid within a single system, it is crucial to consider all the physics involved within the geomaterial system. A fully coupled thermo-hydromechanical model is developed. The model consists of a three-phase flow model designed as a set of coupled PDE application modes that when coupled with the Heat Transfer Module and ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Quick Search