Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Benchmark Comparison of Natural Convection in a Tall Cavity

H. Dillon[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

A comparison of the commercial code COMSOL is performed with the bench-mark solutions provided by the literature for a tall, differentially heated rectangular cavity for aspect ratios of 8, 15, 20, and 33. At small Rayleigh numbers the flow is dominated by conduction. As the Rayleigh number is increased the flow becomes unstable, first resulting in multicellular secondary flow patterns, and then ...

Three Dimensional Numerical Study of the Interaction of Turbulent Liquid Metal Flow with an External Magnetic Field

G. Pulugundla[1], M. Zec[2], and A. Alferenok[3]
[1]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[2]Department of Advanced Electromagnetics, Ilmenau University of Technology, Ilmenau, Germany
[3]Electrothermal Energy Conversion Group, Ilmenau University of Technology, Ilmenau, Germany

Lorentz Force Velocimetry (LFV) is a non-contact measurement technique used to determine flow rates in electrically conducting fluids by exposing the flow to an external magnetic field and measuring the Lorentz force acting on the magnet system. Typically, for LFV applications real and complex permanent magnet systems with inhomogeneous magnetic fields interact with the fluid. In this paper, ...

Uncertainty Quantification: What it is and Why it is Important for Multiphysics Simulations

P. Qian [1, 2],
[1] University of Wisconsin - Madison, Madison, WI, USA
[2] SmartUQ, Madison, WI, USA

Uncertainty appears in many aspects of physical simulations including stochastic design parameters, hard-to-specify input distributions, probabilistic boundary and initial conditions, and unknown geometries. Uncertainty Quantification (UQ) has emerged as the science of quantitative characterization and reduction of uncertainties in both simulation and test results. Stretching across applied ...

Implementation of Immersed Finite Element Method for Fluid-Structure Interaction Applications

N. Nama [1], T. J. Huang [1], F. Costanzo [1],
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA

Fluid-structure interaction (FSI) refers to a class of problems in which the motions of fluid and solid are coupled. FSI is of great significance in many applications such as aero-elasticity, biomechanics, and design of various engineering systems. Typically, the multiphysics involved in the FSI problems render them too complex to solve analytically, necessitating the use of numerical ...

Investigating the Performance of Mechanically Ventilated Double-Skin Facades with Solar Control Devices in the Main Cavity - new

C. G. Galante[1]
[1]Newtecnic Ltd, London, England, UK

The use of ventilated facades may reduce the cooling and heating energy demands of the building. Double-skin facades (DSFs) belong to the wider group of ventilated facades and currently represent one of the most interesting and studied facade systems. The purpose of this study is to investigate the thermal behaviour and performance of a DSF being designed for a real project in the Middle East ...

Scraping Non-Newtonian Power-Law Paint

C. R. Meyer [1], J. R. Rice [1],
[1] Harvard University, Cambridge, MA, USA

A similarity solution to Taylor's paint scraper problem for the flow of a non-Newtonian power-law fluid is presented. A shooting method numerical solution agrees with the results found for Newtonian fluids and is able to capture both shear-thinning and shear-thickening fluids. Simulations created in COMSOL Multiphysics® software are also presented to corroborate the shooting method and display ...

Rotor Modeling at Low Temperature for NMR

N. Luchier [1,2], P. Forestier [1,2], E. Bouleau [1,2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CEA, Grenoble, France

Our laboratory is currently leading the design and the manufacture of a novel device that allows NMR spectroscopy to be cooled down to cryogenics temperature (in the 10-100 K range). The system features a sample-holder that rotates at very high frequencies (f >10 kHz). Two aerostatics gas-bearings, allows this sample holder to be suspended in its chamber thanks to a Helium flow. A second Helium ...

Pervaporation Membrane Module Design with Simulation

J. Boon [1], H. Heuver [2], F. Velterop [2], H. van Veen [1], A. de Groot [1],
[1] ECN, Petten, The Netherlands
[2] Pervatech, Rijssen, The Netherlands

Pervaporation is the selective evaporation of one component in a liquid mixture using a membrane. HybSi pervaporation membranes consist of porous ceramic support tubes with a thin selective layer on the inside or feed side. Modules for 7 and 19 membrane bundles (surface area up to 2.0 m2) are studied in COMSOL Multiphysics® for the absence of pressure drop on the permeate side. With a water flux ...

3D Model of Flow Behavior near Dermal Denticles from Shark Skin

A. N. Kolborg [1],
[1] Technical University of Denmark, Lyngby, Denmark

This project makes a first attempt at modelling fluid flow over shark skin on a microscopic level. The modeled fluid flow shows good agreement with theory. Further refinement of the model parameters holds promises of better understanding of this complex fluid flow phenomenon. The COMSOL Multiphysics® model was evaluated against micro particle image velocimetry measurements of the same flow ...

Numerical Sensitivity Analysis of a Complex Glass Forming Process by Means of Local Perturbations

C. Janya-Anurak, T. Bernard, and H. Birkenhofer
Fraunhofer Institute of Optronics
System Technologies and Image Exploitation IOSB
Karlsruhe, Germany

Over the last few years, Finite Element Models have become increasingly important as tool for the design of process control strategies or process optimization. Some processes possess complex spatio-temporal coupled and nonlinear dynamic. For process optimization it is very important to know the impact of parameters and state variables to the relevant process “output” parameters. In the glass ...