Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Consultez les proceedings de la Conference COMSOL 2020

Computational Fluid Dynamicsx

A Parametric Study of Shock Wave Simulations with Help of COMSOL Multiphysics

F. Ferrero[1], R. Meyer[1], M. Kluge[1], V. Schröder[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

Adiabatic compression of gases can work as an ignition source and is still one of the main causes of accidents in chemical plants processing tetrafluoroethylene (Reza and Christiansen, 2007). The ignition of tetrafluoroethylene induced by adiabatic compression has been studied ... En savoir plus

Turbulent Bounded Flows for Oil & Gas Industry with COMSOL CFD Module

A. Fadel[1], G. Fontana[1]
[1]Isoil Impianti, Albano S. Alessandro, Italy

Industrial applications of fluid mechanics can require to satisfy necessities as diverse as legal norms, optimization requirements and manufacturing constraints. Therefore a Computational Fluid Mechanics software often becomes a must in the development of new devices or the improvement ... En savoir plus

A Theoretical Model for the Control of Color Degradation and Microbial Spoilage Occurring in Food Convective Drying

S. Curcio[1], M. Aversa[1]
[1]University of Calabria, Department of Engineering Modeling, Rende, Cosenza, Italy

The aim of this work was the development of a predictive model aimed at identifying a proper control strategy of food drying process. In particular, it was intended to determine the effect of operating conditions both on the color degradation, chosen as a reference quality parameter, and ... En savoir plus

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the ... En savoir plus

Pore-Scale Simulation of Two-Phase Flow with Heat Transfer Through Dual-Permeability Porous Medium

H.A. Akhlaghi Amiri[1], A.A. Hamouda[1]
[1]University of Stavanger, Stavanger, Rogaland, Norway

This paper addresses one of the major challenges in water-flooded oil reservoirs, which is early water breakthrough due to the presence of high permeable layers in the media. COMSOL Multiphysics is used to model two phase (water and oil) flow in dual-permeability porous medium at micro ... En savoir plus

Modeling Large-Scale Mine Dewatering by Using Subsurface Flow Module in COMSOL Multiphysics

J. Molinero[1], A. Nardi[1], P. Trinchero[1]
[1]Amphos 21, Barcelona, Spain

Groundwater is a key factor affecting mine operations worldwide. On one hand, both underground and open pit mines need to pump out groundwater in order to proceed with mineral extraction and increase the stability of rock slopes. On the other hand, groundwater abstractions can produce ... En savoir plus

Solar Cell Cooling and Heat Recovery in a Concentrated Photovoltaic System

M. Cozzini[1]
[1]Fondazione Bruno Kessler (FBK), Renewable Energies and Environmental Technologies (REET) Unit, Trento, Italy

Concentrated photovoltaic systems with high efficiency solar cells are being widely investigated, aiming at improving the cost-efficiency balance in the solar energy field. Different cell types are in use: e.g., high concentration triple junction cells, reaching efficiencies of the order ... En savoir plus

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar ... En savoir plus

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor ... En savoir plus

Predicting the Retention Time of Nuclear Reaction Products in the PSI Recoil Chamber Using COMSOL Multiphysics

R. Dressler[1], R. Eichler[1]
[1]Paul Scherrer Institute, Villigen, Switzerland

Introduction: The chemical properties of the heaviest elements (atomic number Z > 103) depend on the influence of the high nuclear charge to their electronic structure. Enhanced chemical stability of copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114) was predicted already 40 year ago ... En savoir plus