Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time frames involved. Performing a safety analysis of a radioactive waste disposal system requires therefore ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

Reactive Transport Processes in Compacted Bentonite

A.E. Idiart[1], M. Pekala[1], A. Nardi[1], D. Arcos[1]
[1]Amphos 21, Barcelona, Spain

The Swedish Organization for Radioactive Waste (SKB) is considering disposal High Level Wastes in a deep underground repository. Bentonite clay is planned to be used in the near-field of the waste packages as buffer material. The buffer is expected to provide a favorable environment with limited radionuclide migration due to slow diffusion and retardation by sorption and cation-exchange effects. ...

Short-Term Behavior and Steady-State Value of BHE Thermal Resistance - new

S. Lazzari[1], A. Priarone[2],
[1]DIN, University of Bologna, Bologna, Italy
[2]DIME-TEC, University of Genova, Genova, Italy

The transient behavior of the thermal resistance of single and double U-tube borehole heat exchangers (BHEs) is investigated numerically by means of COMSOL Multiphysics® software with reference to the 2D cross section of usually employed BHEs. The study is performed in a dimensionless parametrical form, the parameters being the ratio between the thermal conductivities of grout and ground, the ...

Earthquake and Volcano Clustering at Mono Basin (California)

D. La Marra[1], A. Manconi[2], and M. Battaglia[1]
[1]Dept of Earth Sciences, University of Rome “La Sapienza”, Roma, Italy
[2]IRPI-CNR, Strada delle Cacce, Torino, Italy

This study investigates the feedback between fault slip and dike intrusions during the Mono-Inyo eruption sequence of ~1350 A.D. (Mono Basin, California). We perform an extensive validation of 3D finite element models, implemented in the Structural Mechanics module of COMSOL Multiphysics, against standard analytical solutions of fault dislocation in a homogeneous elastic flat halfspace. The ...

Modeling of Bentonite Hydration Process in a High Level Waste Repository

M. Hokr[1], I. Skarydova[1]
[1]Technical University of Liberec, Liberec, Czech Republic

We deal with a problem of bentonite behavior during the saturation process in a high level waste repository of KBS-3V conception, SKB (2010). Bentonite is a type of clay with specific nonlinear behavior caused by water adsorption and swelling ability in contact with water. We solve problems of bentonite saturation (flow of water in partly saturated conditions) with simple 2D axisymmetric models. ...

Variation of the Frost Boundary below Road and Railway Embankments in Permafrost Regions in Response to Solar Irradiation and Winds 

N.I. Kömle[1] and W. Feng[2]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China

We present COMSOL solutions for a coupled gas flow and heat transfer problem, which occurs particularly when traffic pathways are constructed in high altitude and arctic regions, where the underground is frozen soil. To avoid melting of the frozen ground (which usually leads to mechanical instability) one has to find suitable measures to keep the subsurface soil and the embankment suitably cool. ...

Benchmark Calculations with COMSOL of the Transport of Radionuclides Through Clay and Bentonite Barriers in a Geological Repository

M.L. Sentís[1], F. Altorfer[1], M. Herfort[1], A. Jakob[2], G. Kosakowski[2], and S. Friedel[3]

[1]Swiss Federal Nuclear Safety Inspectorate, Villigen, Switzerland
[2]Paul Scherrer Institute, Villigen, Switzerland
[3]COMSOL Multiphysics GmbH, Zürich, Switzerland

A benchmark study was carried out by the Swiss Nuclear Safety Inspectorate (ENSI) in collaboration with the Laboratory for Waste Management (LES) of the Paul Scherrer Institute (PSI) in order to evaluate the capabilities of the program COMSOL for the calculation of the transport of radionuclides through clay and bentonite barriers in a geological repository for radioactive waste. In this study ...

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...