Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

The Use of COMSOL Multiphysics® Software to Explore Flooding and Rising Dampness Problems Related to Cultural Heritage

H.L. Schellen [1], A.W.M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

In The Netherlands rising dampness problems due to flooding of rivers and high groundwater levels form an essential treat for monumental buildings and heritage. A number of cases exists where rising dampness problems lead to the deterioration of wall finishes but also of valuable wall paintings in churches and castles. To explore the problem and to look for solutions like drying regimes, ...

Benchmarking Tailored Formulations of Multiphase Flow in Porous Media

Á. Sainz [1,2], A. Nardi [1], E. Abarca [1], F. Grandía [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Université Toulouse III - Paul Sabatier, Toulouse, France

Nowadays, gas and nuclear waste storage, shale gas and EOR exploitation rise the need to understand and predict the fate of multiphase flows in the underground. Various formulations for multiphase flow arise from different linear combinations of governing equations and choice of associated unknowns. Each formulation has its own benefits and drawbacks; and the optimal may vary depending on the ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Submarine Gas Hydrate Reservoir Simulations - A Gas/Liquid Fluid Flow Model for Gas Hydrate Containing Sediments - new

S. Schlüter[1], T. Hennig[1], G. Janicki[1], G. Deerberg[1]
[1]Fraunhofer UMSICHT, Oberhausen, Germany

In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing methane by depressurization and/or by injecting CO2 is studied in the frame of the research project SUGAR. ...

Development of a Thermo-Hydro-Geochemical Model for Low-Temperature Geoexchange Applications

F. Eppner [1], P. Pasquier [1], P. Baudron [1],
[1] École Polytechnique de Montréal, Montréal, QC, Canada

Standing column wells (SCW) are open-loop geoexchange systems used to provide space heating and cooling to buildings. As they use groundwater as heat carrier fluid and modify its thermo-chemical conditions along the year, they may favor calcite dissolution and precipitation, thus increasing maintenance costs. In order to predict the thermo-hydro-chemical (THC) processes occurring in a SCW and ...

Integration of the DeProF Model for Two-Phase Flow in P.M. into the Subsurface Flow Module

M. S. Valavanides [1], E. D. Skouras [2], A. N. Kalarakis [3], V. N. Burganos [2],
[1] TEI Athens, Athens, Greece
[2] FORTH/ICE-HT, Patras, Greece
[3] TEI of Western Greece, Patras, Greece

Relative permeability maps for steady-state two-phase flow in porous media, delivered by implementing the DeProF model [1] algorithm, were integrated within COMSOL Multiphysics® software [2] to resolve field-scale flows in porous media. The mechanistic model DeProF [1], predicts the relative permeability of oil and water in terms of the capillary number, Ca, the oil/water flowrate ratio, r, ...

Remote Sensing of Electromagnetically Penetrable Objects: Landmine and IED Detection

R. Eze [1], G. Sivulka [2], ,
[1] City University of New York - LaGuardia Community College, Long Island City, NY, USA
[2] Regis High School, New York, NY, USA

The detection, characterization, and classification of underground environmental hazardous objects [mines, IEDs, and other unexploded military hardware] is a worldwide problem that needs urgent attention and solution. While electromagnetic sensor technologies have been applied to identify these hazards, increasingly low dielectric contrast between newer, sophisticated landmines, and complex ...

Multiphysics Modelling of Standing Column Well and Implementation of Heat Pumps Off-Loading Sequence

A. Nguyen[1], P. Pasquier[1], D. Marcotte[1]
[1] Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby allowing the effect of the pumped water temperature on the capacity and coefficient of performance of the heat ...

Simulation of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow

R. Hu [1], Q. Liu [1],
[1] School of Earth Science and Engineering, Hohai University, Nanjing, China

Based on the heat transfer and seepage theory in porous media, a 2D cross section of a horizontal AGF project is selected and a numerical model is set up, which is based on full coupling of temperature and flow fields by combining physical interfaces of Darcy's Law and Heat Transfer in Porous Media. The simulation results show that freezing wall appears in an asymmetrical shape as the ...

Energy Pile Simulation – an Application of THM-Modeling - new

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical coupling. The fluctuating thermal regime may affect the deformation of pile and surrounding ground as effect of ...