Quick Search

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Analysis of Burning Candle

J.S. Crompton, L.T. Gritter, S.Y. Yushanov, and K.C. Koppenhoefer
AltaSim Technologies LLC, Columbus, OH, USA

Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle wax leads to a phase change that allows mass transport via capillary flow prior to combustion in the flame. ...

Thermal Simulations of a LED Light Using COMSOL Multiphysics

M. Maaspuro[1]
[1]University of Turku, Turku, FInland

An experimental LED light composed of a multi-chip LED-module, a LED driver and an efficient heat sink, was investigated using COMSOL Multiphysics software and the Heat Transfer Module. In an LED light heat is mainly generated in the LEDs but some amount of heat is generated also in the LED driver. The main target of the simulations was to resolve the junction temperatures of LEDs, the most ...

Modelling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics

P. S. Rao[1], C. K. Chandra[1]
[1]Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

High Pressure Processing (HPP) is a leading non-thermal food processing technology that is often cited as a major technological innovation in food preservation. Although it is very early to place this emerging technology among the list of breakthroughs in food processing, HPP has started to become a viable commercial alternative for pasteurisation of value added fruits, vegetables, meat, and ...

Modeling Convection during Melting of a Phase Change Material

D. Groulx, and R. Murray
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

COMSOL Multiphysics can be used to model a latent heat energy storage system. A 2D numerical study was performed to simulate melting of a PCM including both conduction and convective heat transfer. The heat transfer in fluids and laminar flow physics interfaces were used. To model natural convection, proper volume force was applied to the PCM. The viscosity was input as a piecewise, continuous ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Analysis of Thermoelectric Phenomena

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Thermoelectric phenomena provide the direct conversion of heat into electricity or electricity into heat, the phenomena is described by three related mechanisms: the Seebeck, Peltier and Thomson effects. Thermoelectric devices have found many applications ranging from temperature measurement, solid state heating or cooling and direct energy conversion from waste heat. In this paper, analysis ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Numerical Study of a High Temperature Latent Heat Storage (200-300oC) Using Eutectic Nitrate Salt of Sodium Nitrate and Potassium Nitrate

C.W. Foong, J.E. Hustad, J. Løvseth, and O.J. Nydal
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

In this study, a small scale direct solar thermal energy storage system with secondary reflector is designed and developed. The main advantage of thermal energy storage is that cooking can be carried out during the time when there is little or no sun shine. In addition, no heat transport fluid is needed in this system. A well insulated heat storage should keep the heat for about 24 hours. KNO3 ...

Modeling Residual Stresses in Arc Welding

F. Roger[1], and A. Traidia[2]
[1]ENSTA Paristech, Paris, France
[2]AREVA NP, Saint Marcel, France

The prediction of mechanical response of assemblies during arc welding necessitates the knowledge of thermal history of the components and the constitutive behavior of the materials. COMSOL can simulate thermal and structural interaction but it needs to evaluate the time evolution of internal variables like viscoplastic strain and hardening parameters. In the present paper we extend the ...

Modeling of a Counter Flow Plate Fin Heat Exchanger - new

R. Jia[1], J. Hu[1], X. Xiong[2]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA

Plate fin heat exchangers are widely used for heat recovery or cooling purposes in many industries, such as cryogenics, aerospace and automobile industries. This paper developed a numerical model to simulate the heat transfer and fluid flow in a counter flow plate fin heat exchanger and optimize its design parameters. The conjugate heat transfer in the finned plate and fluids in the channels ...

1 - 10 of 447 First | < Previous | Next > | Last