Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Study of Capacitance in Electrostatic Comb-Drive Actuators

P. Hanasi [1], B. G. Sheeparamatti [1], V. Abbigeri [1], N. Meti [1],
[1] Visvesvaraya Technological University, Belagavi, Karnataka, India

Capacitor is mainly defined as two conducting plates that can hold the opposite charges on it. These plates can be used either as a sensor or an actuator. If the relative distance between the two conductors changes as result of given input, then capacitance values will change. This results in basic of capacitive or electrostatic sensing configuration. On the other hand, if a voltage or the ...

MEMS based Gecko Foot for Micro Robotics

A. Pasumarthy [1], H. Sinha [1], A. Islam [1],
[1] Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Gecko foots have inspired researchers to develop designs that can help robots to tread vertically oriented surface. These nanobots find many applications as they can perform a lot of operations more efficiently and also lower the cost of such operations. These can be employed in various fields: medical, industrial etc. Gecko lizards use dry adhesion van der Waals forces to climb walls produced ...

Utilization of COMSOL Multiphysics' JAVA API for the Implementation of a Micromagnetic Modeling and Simulation Package with a Customized User Interface

L. Teich[1], A. Hütten[2], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany
[2]Department of Physics, Thin Films and Nanostructures, Bielefeld University, Bielefeld, Germany

One of the big advantages of COMSOL Multiphysics is the possibility to implement user-defined partial differential equations (PDE) which can be coupled to COMSOL\'s predefined physics interfaces. However, using the tool’s standard user interface requires manual implementation of the PDEs and a multitude of problem-specific parameters. This process is not just error-prone but also very time ...

Simulation of the Impedance Response of Thin Films as a Function of Film Conductivity and Thickness

Y. Jin [1], S. Kumar [1], R. A. Gerhardt [1],
[1] School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA

1. Introduction The electrical properties of materials are important in many different applications. In microelectronics for example, films must perform as insulators, semiconductor or as conducting layers. In recent years, scanning probe methods are being extended to the nanometre scale range since accurate high spatial resolution measurements of electrical properties are of great interest ...

Multiphysics Simulation of a Self-heating Paraffin Membrane Microactuator

P. Lazarou[1], C. Rotinat[1]
[1]CEA LIST/DIASI/LRI, Paris, France

A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. The object of this study is the numerical validation of a paraffin microactuator concept by coupling multiple ...

Nanowire Based Flexible Piezoelectric Sensor for Structural Health Monitoring Applications

A. El Kacimi [1], E. Pauliac-Vaujour [1], J. Eymery [2]
[1] University Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France
[2] University Grenoble Alpes, CEA, Grenoble, France

We report on the modeling of flexible piezoelectric capacitive sensor based on GaN wires grown by Metal Organic Vapor Phase Epitaxy. Single crystal cone-shaped wires with hexagonal cross section are embedded within dielectric layers (parylene) in between two metal electrodes to achieve a capacitive structure. The device characteristics directly depend on growth conditions for example by tuning ...

COMSOL Thermal Model for a Heated Neural Micro-Probe

M. Christian[1], S. Firebaugh[1], A. Smith[1]
[1]United States Naval Academy, Annapolis, MD, USA

This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat equation with an external MATLAB function to determine the heat generation along the length of the probe. The ...

Simulation of Piezoelectric Nanofibers for Harvesting Energy Applications - new

S. Rouabah[1], A. Chaabi[1]
[1]Electronics Department, Constantine University, Constantine, Algeria

In this work, we have taken a model which is simulated using COMSOL Multiphysics®. It was used as a tool to design, characterize and to simulate an example which is nanofibers based piezoelectric energy generators. The results are compared with other available sources but using with another materials. After applying a pressure on the top of surface of nanogenerator, the output parameters ...

Design & Simulation of Various Shapes of Cantilever Beam for Piezoelectric Power Generator

P. Graak [1], S. Kaur [1], A. Gupta [1], P. Chhabra [1], D. Kumar [1], A. Shetty [2]
[1] Kurukshetra University, Kurukshetra, Haryana, India
[2] Indian Institute of Science, Bengaluru, Karnataka, India

The ambient vibrations can be of great promise for harvesting energy initially at small scale to use for micro and nano scale devices. Such vibrations converted to electrical energy by piezoelectric transducer due to their major significance. Various research journals have introduced the phenomenon of energy optimization to increase the generated power and used directly for application like ...

Modeling and Simulation of Dual Application Capacitive MEMS Sensor - new

A. Ravi[1], R. Krishna[1], J. Christen[1]
[1]Arizona State University, Tempe, AZ, USA

Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first designed and simulated to work as a CMUT operating at about 5 MHz frequency. The device can also function as a ...