- Bridging the Terahertz Gap
- Modeling the Lithium-Ion Battery
- Protection contre la Corrosion
- Modélisation des batteries
- Modélisation et Simulation dans le développement des piles à combustible
- Modélisation thermique des petits satellites
- Analyse électro-vibroacoustique d'un transducteur à armature équilibrée
Consultez les proceedings de la Conference COMSOL 2024
A portable device that can identify protein and peptides real time in complex biological systems such as human bodily fluids reliably and accurately is in high demand to properly diagnose and treat medical conditions. Lynntech has developed an innovative Polydimethylsiloxane (PDMS) based ... En savoir plus
Dielectrophoresis (DEP) is a method for cell manipulation without physical contact in lab-on-chip devices, since it exploits the dielectric properties of cells suspended in a microfluidic sample, under the action of locally generated high-gradient electric fields. The DEP platform that ... En savoir plus
The present study investigates simulation model and droplet ejection performance of a thermal-bubble microejector. This model simulates the bubble nucleation and the bubble growth, to predict the droplet ejection process. Specificity, it is achieved by coupling an electric-thermal model ... En savoir plus
In this paper we present results of the mathematical modeling of AC electroosmotic micropumps. Unlike others we use the full dynamic description, instead of the linearized model. Skewed hybrid discretization meshes are employed in order to accurately capture the main features of the ... En savoir plus
A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains ... En savoir plus
A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix ... En savoir plus
Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally ... En savoir plus
Relief patterning of the surface of microchannels has been actively pursued as a method of promoting mixing in systems with a low Reynold’s number (<<100). In this work, we explore, by using the COMSOL Multiphysics package and its Chemical Engineering Module, the possibility of ... En savoir plus
The need for fast, easy and cost-effective analysis of blood samples as well as our understanding of the functionality of cells and neurons are two rather pressing issues in the modern world. Both of these can be addressed by functional lab-on-a-chip systems, which have been designed and ... En savoir plus
The ongoing trend towards miniaturization, higher integration as well as cost efficiency will make it necessary to investigate a new assembly method for micro components. In this paper, a novel method of fluidic-based micro assembly is presented. A self-assembly effect which is caused by ... En savoir plus