Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Design and Simulation of Unimorph Piezoelectric Energy Harvesting System

E. Varadarajan[1], M. Bhanusri[2],
[1]Research and Innovation Centre (RIC), IITM Research Park, Chennai, Tamil Nadu, India
[2]Department of Physics, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India

In this paper we made an attempt to maximize the power output in the different piezoelectric materials in a unimorph cantilever beam configuration. In this research, a macro scale unimorph piezoelectric power generator prototypes consists of an active piezoelectric layer, stainless steel substrate and titanium proof mass was designed for frequencies 60 Hz - 200 Hz. An analytical model of a micro ...

Heat Transfer and Phase Change Simulation in COMSOL Multiphysics® Software

N. Huc [1]
[1] COMSOL France, Grenoble, France

This session is devoted to phase change modeling in heat transfer simulations. The great interest in phase change comes from the outstanding thermal performance that it enables in particular for cooling or thermal protection applications. Alternatively, phase change can induce most of the energy cost in drying or cooking applications. In all of these cases, a thermal analysis is required to ...

On the Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption

J. Knox [1],
[1] Marshall Space Flight Center - NASA, Huntsville, AL, USA

This work examined in detail the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer information from experimental breakthrough data and the consequences that may arise when doing so based on using a 1-D axially dispersed plug flow model in COMSOL Multiphysics® software and its associated Danckwerts outlet boundary ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Evaluation of Instability of a Low-salinity Density-dependent Flow in a Porous Medium - new

Y. T. Habtemichael[1], R. T. Kiflemariam[2], H. R. Fuentes[1]
[1]Department of Civil & Environmental Engineering, Florida International University, Miami, FL, USA
[2]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

Seawater intrusion into coastal aquifers is usually modeled by using transport models that include account for the effect of variable-density on flow. Variable-density models can be validated with the Henry and Elder benchmark problems. However, when mixed convective flow is simulated under variable density conditions, it is susceptible to physical and numerical instabilities. The purpose of ...

COMSOL Multiphysics® Software and PV: A Unified Platform for Numerical Simulation of Solar Cells and Modules

M. Nardone [1],
[1] Bowling Green State University, Bowling Green, OH, USA

Introduction: Existing solar cell (photovoltaic, PV) device simulation software is either open source with limited capabilities (1D only) [1,2] or extremely expensive with obscure functionality [3]. PV researchers need an accessible and versatile simulation tool to optimize existing technologies and to reduce the time from concept to prototype for new technologies. This work demonstrates how ...

2D Axisymmetric Simulation of Pulsed Electrochemical Machining (PECM) of Internal Precision Geometries

M. Hackert-Oschätzchen [1], M. Kowalick [1], R. Paul [1], M. Zinecker [1], D. Kuhn [1], G. Meichsner [2], A. Schubert [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

This study presents investigations on a developed process design for manufacturing internal precision geometries by pulsed electrochemical machining (PECM) with help of multiphysics simulations. Therefore, a 2D axisymmetric transient model was created. The considered physical phenomena are fluid dynamics, thermodynamics, electrodynamics, the formation and transport of hydrogen as well as ...

Design and Analysis of a Wetting Lens for the Pinhole Cameras of a Two Phase Flow System

A. K. Reddy[1], T. Satyanarayana[1]
[1]Lakireddy Balireddy Autonomous College of Engineering, Mylavaram, A.P., India

The present work reports the fabrication process of micro lens for pinhole cameras, modeled using COMSOL Multiphysics®, by satisfying the wetting properties. Wetting is a change in contact angle between the liquid and solid surface area. The wetting properties are clearly understood in terms of forces. The two immiscible fluids were taken for the formation of fluid-fluid and wall-fluid ...

Development of a User Interface for Design of SO2 Oxidation Fixed-Bed Reactors

A. Nagaraj [1], P. L. Mills [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply and hence to increase production, recycling and innovative clean technologies must be explored. From ...

Topology Optimization of Thermal Heat Sinks

J. H. K. Haertel [1], K. Engelbrecht [1], B. S. Lazarov [2], O. Sigmund [2],
[1] Technical University of Denmark, Roskilde, Denmark
[2] Technical University of Denmark, Kgs. Lynby, Denmark

1. Introduction The topology optimization method is becoming increasingly popular as a design tool for multiphysics systems [1,2]. Topology optimization of fluid-thermal systems has been presented for example in [3] for forced convective heat transfer and in [4] for natural convection problems. In this work, topology optimization including density filtering and projection is applied to ...