Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical Investigation of Micronozzle Performance for Various Nozzle Geometries - new

P. A. Haris[1], T. Ramesh[1]
[1]National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India

Design and manufacture of thrusters for producing very low thrust force in the range of milli or micro newtons using micronozzles has been actively developed in the last decade. The nature of propellant flow in such micronozzles differs from that of macro nozzles. In micronozzles, viscous effect dominates; hence the flow is always in laminar regime with high viscous losses. Objective of this ...

Ferromagnetic Materials for MEMS- and NEMS-Devices

A. Weddemann, J. Jadidian, S. Khushrushahi, Y. Kim, and M. Zahn
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge MA

The modeling of ferromagnetic materials is a challenging task of high industrial and academic impact. Thin film and granular systems form the basis of novel spintronic devices such as modern hard drives with a high data area storage density. In order to push the current limits even further and to design more efficient devices, a strong understanding of the governing dynamics is required. We ...

Time Dependent Simulations of Thermoelectric Thin Films and Nanowires for Direct Determination of their Efficiency with COMSOL Multiphysics®

M. Muñoz Rojo[1], J. Jose Romero[1], D. Ramos[1], D. Borca-Tasciuc[2], T. Borca-Tasciuc[2], M. Martín Gonzalez[1]
[1]Instituto de Microelectrónica de Madrid, Madrid, Spain
[2]Rensselaer Polytechnique Institute, Troy, New York, USA

Thermoelectric materials are one of the most promising materials for future and nowadays energy harvesting devices, as they can convert heat into electricity and vice-versa. The efficiency of thermoelectric materials is related with the figure of merit, ZT. Our work deals with the determination of the parameters that affect the measurement of the ZT with the Harman technique and the best ...

Analysis of Highly-dense LED Structures

Te-Yuan Chung
National Central University

In this presentation we consider LED lighting. We begin the presentation by explaining the basics of LED lighting and the opportunities it provides. We then provide examples of different issues with LED lighting, such as optical, electrical, thermal and mechanical issues. The presentation is accompanied by Numerical Models made in COMSOL Multiphysics of LED lighting. At the end of the ...

A Transient Unified Model of Arc-Weld Pool Couplings During Pulsed Spot Gas Tungsten Arc Welding

A. Traidia[1], and F. Roger[2]
[1]AREVA NP, Technical Center, Saint Marcel, France
[2]ENSTA Paristech, Paris, France

Using COMSOL Multiphysics, a finite element model is introduced in this paper to describe the couplings between the welding arc and the weld pool dynamic in pulsed gas tungsten arc welding. The cathode, arc-plasma and melting anode regions are taken into account. The unified time-dependent model describes the heat transfer, fluid flow and electromagnetic fields in the three regions. The ...

Application of Multiphysics in the Simulation of Metallurgical Processes

M. Ek, and D. Sichen
Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

In the steelmaking processes, the stirring of the metal bath by argon (or nitrogen) injection is a widely used method to achieve chemical or thermal homogeneity. Computational fluid dynamics can be used as a very powerful tool to gain an insight into the mass transfer and heat transfer in liquid steel. In this paper, the flow behaviors in two different steelmaking reactors were simulated using ...

Modelling Reservoir Stimulation in Enhanced Geothermal Systems

G. Perillo[1], G. De Natale[2], M.G. Di Giuseppe[2], A. Troiano[2], C. Troise[2]
[1]University of Naples Parthenope, Italy
[2]INGV - Osservatorio Vesuviano, Naples, Italy

Fluid injection in deep wells is a basic procedure in geothermal permeability enhancement. The retrieved changes of Pressure and Temperature are subsequently considered as sources of incremental stress and strain changes, using the elastic model from COMSOL Multiphysics®, which are then converted to Coulomb stress changes on favoured faults, taking into account also the background regional ...

Simulation of Wear using LiveLink™ for MATLAB®

D. Sutton[1]
[1]National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, United Kingdom

An incremental wear model has been developed using COMSOL Multiphysics® with MATLAB® to predict the evolution of component geometry as a result of wear. Whilst Archard’s wear law is a well-known empirical model for the prediction of wear volume, the design engineer is interested in changes in tolerance as a result of component geometry. At each time step, the simulation extracts the pressure ...

Use of COMSOL Multiphysics® for IAQ Monitoring in Cleanrooms - new

G. Petrone[1], C. Balocco[2]
[1]BE CAE & Test, Catania, Italy
[2]Department of Industrial Engineering, University of Firenze, Firenze, Italy

High levels of Indoor Air Quality (IAQ) in Operating Theatres (OT) is an important issue in order to contribute in prevention of Surgical Site Infections (SSI). Despite of specific plant layouts are applied for OT ventilation (e.g. unidirectional flow), the effective use conditions can heavily modify the design microclimate and air quality levels. Medical staff presence and movements and sliding ...

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations - new

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole.

Quick Search