Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...

Modeling of a Nonlinear Hybrid Plasmonic Waveguide for Enhanced Surface Plasmon Polaritons Through Optical Parametric Amplification

D. Wang[1], T. Li[1], S. Wang[1], S. Zhu[1]
[1]Nanjing University, Nanjing, Jiangsu, China

Surface Plasmon Polaritions (SPPs), as electromagnetic waves localized at the surface of a metal, enjoy the unique properties to confine energy into sub-wavelength scale, which is beneficial for future photonic integration. However, the severe absorption caused by the metal influences the propagation distance greatly. Actually, SPPs loss can be compensated by optical parametric amplification in ...

A Study of Distributed Feed-Back Fiber Laser Sensor for Aeronautical Applications Using COMSOL Multiphysics

I. Lancranjan[1], C. Gavrila[2], S. Miclos[3], and D. Savastru[3]
[1]Advanced Study Centre - National Institute for Aerospace Research Elie Carafoli, Bucharest, Romania
[2]Technical University of Civil Engineering Bucharest, Romania
[3]National Institute R&D of Optoelectronics, INOE 2000, Bucharest, Romania

Distributed Feedback Fiber Laser (DFB-FL) sensors are increasingly used in aeronautical applications. One of the newest such applications consists in detecting the “transition” zone between laminar and turbulent air flow upon the extrados surface of an aircraft wing. In this specific application DFB-FL are operated as air pressure sensors monitoring amplitude variations of ~1 Pa (laminar flow) ...

Plasmonics of Nano-Gaps - new

T. Hutter[1], S. Mahajan[2], S. R. Elliott[1]
[1]University of Cambridge, Cambridge, UK
[2]University of Southampton, Southampton, UK

Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed very near to a metallic substrate is studied and discussed. Finite-element numerical simulations were used in ...

Simulation of Field Enhancement in Anisotropic Transition Metamaterials using COMSOL

A. Pandey, and N. Litchinitser
The State University of New York at Buffalo
Buffalo, NY

Transition metamaterials constitute a new class of engineered materials which have material properties tailored in such a manner that the refractive index gradually changes from positive to negative. An important question is what happens at the interface of a positive and negative index material. In this work, we design anisotropic transition materials using metal-dielectric layers and study ...

Optimized Design of Shielded Microstrip Lines using Adaptive Finite Element Method

P. Kakria[1], A. Marwaha[1], and M. S. Manna[2]
[1]Electronics & Communication department, SLIET Longowal, Distt. Sangrur, Punjab, India.
[2]Electrical & Instrumentation department, SLIET Longowal, Distt. Sangrur, Punjab, India.

In this paper, the attempt has been made to design and analyze single strip shielded Microstrip line with capacitive coupling. The main objective is to compute the capacitance per unit length of shielded Microstrip line using Finite Element technique. The computational and simulation work has been carried out with the help of FEM based COMSOL Multiphysics software. The shielded Microstrip ...

Super-resolving Properties of Metallodielectric Stacks

N. Katte[1], J. Haus[1], J.B. Serushema[1], and M. Scalora[2]
[1]University of Dayton, Dayton, OH, USA
[2]Charles M. Bowden Research Center, Redstone Arsenal, AL, USA

We show that diffraction can be suppressed in a one-dimensional metallodielectric stack (MDS) at visible wavelengths to achieve super-resolution imaging. In our calculations we use two popular techniques, which can be adapted to investigate the imaging properties of MDSs. The two methods are the transfer matrix method (TMM) and the Finite element method based software, COMSOL Multiphysics. The ...

Electromagnetic Analysis of an Optical Measuring Device Installed in a Transmission Line - new

C. Soares[1], N. Padoin[1], A. C. Zimmermann[1], G. Cunha[2], P. B. Uliana[2], M. Wendhausen[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]PowerOpticks Technology Ltda, Florianópolis, SC, Brazil

In this study, COMSOL Multiphysics® software was applied to the investigation of the electromagnetic behavior of an optical crystal submitted to the magnetic field generated by electric current in a near positioned metallic conductor. Moreover, the influence of a ferromagnetic apparatus (magnetic concentrator) on the magnetic field acting upon the crystal was investigated. Three cases were ...

Simulation Based Approach to Fluorescence Diffuse Optical Tomography

R. Singh, and I. Jose
BITS Pilani Goa Campus
Goa, India

Diffuse Optical Tomography (DOT) uses Near Infra-red (NIR) light to monitor physiological changes in internal organs. NIR light being less energetic in nature can be used for continuous monitoring of tumor infected biological tissue, neonatal brain and many such applications where high energy radiation can cause severe damage. The forward problem of DOT, which involves obtaining of the ...

Void Shape Evolution of Silicon: Level-Set Approach - new

C. Grau Turuelo[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the process. The use of custom PDEs in COMSOL Multiphysics® software and the Level-Set method provide a good base ...