Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Impulsive Thermomechanics of hypersonic surface phononic crystals

F. Banfi[1], D. Nardi[2], and M. Travagliati[3]
[1]Dipartimento Matematica e Fisica, Università Cattolica, Brescia, Italy
[2]JILA, University of Colorado at Boulder, Boulder, Colorado, United States
[3]Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy

Ultrafast optical generation of pseudosurface acoustic waves is investigated in hypersonic surface phononic crystals. The thermomechanics is modeled from first-principles to follow the initial impulsive heat-driven displacement in the time domain. Spectral decomposition of the displacement over the surface phononic crystal eigenmodes outlines asymmetric resonances featuring the coupling between ...

Simulation of 2D Photonic Crystal With COMSOL Multiphysics® Software - new

Z. Liang[1], Z. Meng[2], K. Jie[1], Y. Benxi[1]
[1]Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
[2]Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China

This paper introduces the concept, research methods and application of photonic crystals. Starting from Maxwell's equations, the functional form of the TE mode and TM mode of the 2D crystal is derived. In 2D crystal, according to the functional forms, we conduct some stimulation about two-demensional photonic crystal with line-defect and dot-defect, forming some results as following: 1. ...

Reconstruction for Interstitial Diffuse Optical Tomography (iDOT) for Human Prostate

X. Liang, K. Kang-Hsin Wang, and T. Zhu
University of Pennsylvania
Philadelphia, PA

Determination of tissue optical properties distributions is very important for determining light fluence distribution during photodynamic therapy (PDT). In this study, an interstitial diffuse optical tomography (iDOT) system was used to characterize the spatial distribution of optical properties for a series of mathematical phantoms as well as verification measurements in a prostate phantom. ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Plasmonic Waveguide Analysis

K. C. Koppenhoefer [1], S. Yushanov [1], J. S. Crompton [1],
[1] AltaSim Technologies, Columbus, OH, USA

Surface Plasmons (SP) or Surface Plasmon Polaritons (SPP) are electromagnetic excitations that propagate at the interface between a dielectric and a conductor, and are evanescently confined in the perpendicular direction to the propagation. They arise via coupling of the electromagnetic field to oscillations of the conductor’s electron plasma and are characterized in terms of dispersion and ...

Numerical Modeling of P-i-N Solar Cell - new

J. J. Mahakud[1], D. Sengupta[1]
[1]Institute of Technical Education & Research, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India

Solar energy is the cleanest form of renewable energy. The most popular form of utilization of solar energy is through the use of photovoltaic cells. Currently the efficiency of available solar cells lies below 20%. To increase the efficiency, multi-junction can be used in solar cells. While developing such devices we need platform to study various characteristics and parameters to optimize ...

Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software

L. Wang [1],
[1] Konica Minolta Laboratory USA, Inc., San Mateo, CA, USA

Organic light emitting diode (OLED) is an emerging technology for next-generation flat panel display and solid-state area lighting thanks to its many advantages such as light weight, low operating voltage, and flexibility, etc. A typical OLED has a multilayer structure that includes a glass or plastic substrate, an anode (ITO), a hole transport layer (HTL), an emitting layer (EML), an electron ...

Pros and Cons of Running COMSOL Multiphysics® Touch-Sensor Simulations on Amazon Web Services™

A. Gourevitch[1]
[1]Cypress Semiconductor Corp., San Jose, CA, USA

We report an implementation of parallel computing on Amazon Web Services™ (AWS) for touch-sensor modeling. COMSOL Multiphysics® was used to simulate an electromagnetic field distribution in a capacitive sensor assembly. Multiple COMSOL jobs were deployed on separate AWS instances and were executed in parallel. The simulation results indicate that implementation of parallel computing for COMSOL ...


刘小璐 [1], 汪滢莹 [1], 田翠萍 [1],
[1] 北京工业大学, 北京,中国

空芯光子晶体光纤(HC-PCFs)具有不同于传统光纤的带隙导光机制,在光通信系统、高功率激光器、工业制造和生物医疗等许多领域有广阔的应用前景。随着光纤拉制技术的不断进步,不同纤芯结构的 HC-PCFs 出现并带来了更好的光传输特性(图1)。通过设计新的纤芯形状,并运用 COMSOL Multiphysics® 中的 RF 模块进行仿真,可以研究各种纤芯 HC-PCFs 的模式(图2)、泄漏损耗(图3)和波导色散(图4)等特性。结果表明:设计的内凹圆化形纤芯 HC-PCFs 比传统的正十二边形纤芯 HC-PCFs 有更低的泄漏损耗和波导色散,而设计的内凹直线形纤芯 HC-PCFs 有很低的泄漏损耗和大的波导色散。新设计的纤芯结构未来可用于大容量光通信 ...

Simulation of Optical Properties of the Si/SiO2/Al Interface  at the Rear of Industrially Fabricated Si Solar Cells

Y. Yang[1], and P. Altermatt[1,2]
[1]Institute for Solar Energy Research Hamelin (ISFH), Emmerthal, Germany
[2]Dep. Solar Energy Research, Inst. Solid-State Physics, Leibniz University of Hanover, Germany

The specular and diffuse reflection properties of sunlight at the rear surface of silicon solar cells with various degrees of roughness are computed by solving the Maxwell and material equations in two dimensions, using the COMSOL RF Module. The model is tested on planar Si/SiO2/air interfaces and planar Si/SiO2/Al interfaces. The simulations show that for wavelengths of 800 nm, (i) maximum ...