Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modeling of Laser Processing For Advanced Silicon Solar Cells

G. Poulain[1], D. Blanc[1], A. Kaminski[1], B. Semmache[2], and M. Lemiti[1]
[1]Université de Lyon: Institut des Nanotechnologies de Lyon INL, CNRS, INSA de Lyon, Villeurbanne, France
[2]SEMCO Eng., Montpellier Cedex 5 - France

Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional processing steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the ...

Optical and Electrical Modeling of Three Dimensional Dye Sensitized Solar Cells

P. Guo[1]
[1]Northwestern University, Evanston, IL, USA

Dye sensitized solar cells (DSSCs) have received tremendous attention as alternative photon harvesting devices. While the sintered TiO2 nanoparticle network attached with dye molecules achieves efficient photon absorption, the electrons have to diffuse through the long TiO2 network to reach the contact, resulting in a high electron density and thus increased recombination. Extensive research ...

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or material attributes that allow them to be selected as candidates in solar dryer designs. 1–7 ...

Study of the Anomalous Reflection from the Ultra-thin Metallic Nano-strip Antenna

胡德骄 [1], 庞霖 [1], 杜惊雷 [1],
[1] 四川大学,成都,四川,中国

Introduction: A metal film whose thickness is smaller than the skin depth, is of high transmission in the visible and half-transparent in the near infrared. However, when the film is divided into discrete nano-strips (i.e. array), an enhanced anomalous reflection and suppressed transmission take place. It was reported that this phenomenon is attributed to the Localize Surface Plasmon Resonance ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]


[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors cannot be used, due to measurement requirements such as extreme temperature, small size, high sensor count, or ...

Modeling of Pulsed Laser Thermal Annealing for Junction Formation Optimization and Process Control

R. Negru [1], K. Huet[1], P. Ceccato[1], B. Godard[1]
[1]Excico, Gennevilliers, France

It is now a well known that the next generation devices in many fields of the semiconductor industry will be based on 3D architectures. In this framework, low thermal budget annealing technological solutions are required. For many applications, either in the field of sensors, microprocessors or high density memories, the Laser Thermal Annealing (LTA), an ultrafast and low thermal budget process, ...

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely uniform grating structures matched to conventional scalar fiber modes. The performance of these geometries can be ...

Finite Element Analysis of a Fiber Bragg Grating Accelerometer for Performance Optimization

N. Basumallick[1], A. Ghosh[1], P. Biswas[1], K. Dasgupta[1], S. Bandyopadhyay[1]
[1]Fiber Optics Laboratory, Central Glass and Ceramic Research Institute, Kolkata, West Bengal, India

Sensitivity of a cantilever-mass based fiber Bragg grating (FBG) accelerometer can efficiently be tailored by altering the distance between the axis of the FBG sensor to the neutral axis of the cantilever. To accomplish that in general, a backing patch is used to mount the FBG on the cantilever. Use of finite element analysis to quantify the influence of the material constant (Young’s modulus) ...

Demonstration of All-Optical NAND Logic Gate Using Photonic Integrated Circuits

J. T. Andrews[1], R. Choubey[1], O P Choudhary[1], N. Malviya[1], A. Patel[1], M. Kumar[1], S. Chouksey[1], J. Solanki[1]
[1]National MEMS Design Center, Department of Applied Physics, Shri G S Institute of Technology & Science, Indore 452003 MP, India

A logic gate performs a certain Boolean logic operation on one or more logical inputs and produces a single logical output. The logic values are either “true” or “false.” Logic gates are bistable devices, that is, they may yield one of these two possible stable outputs. The NAND logic is a universal gate; any logic operation can be performed with various combinations of NAND logics. Many ...